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Abstract

The amount of data managed by organisations continues to grow relentlessly.

Driven by the high costs of maintaining multiple local storage systems, there

is a well established trend towards storage consolidation using multi-tier Vir-

tualised Storage Systems (VSSs). At the same time, storage infrastructures

are increasingly subject to stringent Quality of Service (QoS) demands.

Within a VSS, it is challenging to match desired QoS with delivered QoS,

considering the latter can vary dramatically both across and within tiers.

Manual efforts to achieve this match require extensive and ongoing human

intervention. Automated efforts are based on workload analysis, which ig-

nores the business importance of infrequently accessed data.

This thesis presents our design, implementation and evaluation of data

maintenance strategies in an enhanced version of the popular Linux Ex-

tended 3 Filesystem which features support for the elegant specification

of QoS metadata while maintaining compatibility with stock kernels. Users

and applications specify QoS requirements using a chmod-like interface. Sys-

tem administrators are provided with a character device kernel interface

that allows for profiling of the QoS delivered by the underlying storage. We

propose a novel score-based metric, together with associated visualisation

resources, to evaluate the degree of QoS matching achieved by any given

data layout. We also design and implement new inode and datablock allo-

cation and migration strategies which exploit this metric in seeking to match

the QoS attributes set by users and/or applications on files and directories

with the QoS actually delivered by each of the filesystem’s block groups.

To create realistic test filesystems we have included QoS metadata sup-

port in the Impressions benchmarking framework. The effectiveness of the

resulting data layout in terms of QoS matching is evaluated using a special

kernel module that is capable of inspecting detailed filesystem data on-the-

fly. We show that our implementations of the proposed inode and datablock

allocation strategies are capable of dramatically improving data placement

with respect to QoS requirements when compared to the default allocators.
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1. Introduction

1.1. Motivation

For many decades, the world has witnessed a digital data explosion that

shows no signs of abating. This has been partially driven by a dramatic re-

duction of the cost per gigabyte of storage, which has fallen since July 1980,

from the order of US$ 200 000 [45] per gigabyte to less than US$ 0.10 per

gigabyte today [52]. It has also been driven by the rise of the use of digital

technologies which are now replacing their analog counterparts in almost

all environments. Only in 2009, despite the economic slowdown, the IDC

reported that the volume of electronic data stored globally grew by 62% to

800 million terabytes (or exabytes). This surge in data volumes is antici-

pated to continue; indeed by 2020 it is expected that there will be 35 billion

terabytes (or zettabytes) of data to manage [82].

In the face of this data explosion, classical storage infrastructures in-

volving multiple local storage systems quickly become difficult to manage,

hard to scale and ineffective at meeting evermore-stringent Quality of Ser-

vice (QoS) requirements as dictated by business needs. These pressures have

led to a well established trend towards storage consolidation as typified by

the deployment of multi-tier Virtualised Storage Systems (VSSs).

RAID

SCSISCSI SSD SCSI SCSI

Figure 1.1.: Three examples of Direct-attached Storage (DAS) setups.
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To clarify this scenario change, we first present Figure 1.1 illustrating

some classical storage infrastructures, which are also known as Direct-at-

tached Storage (DAS). While some of them are as simple as one or more

local disks (of the same type or not) attached to a host, others may involve

setups such as Redundant Array of Inexpensive Disks (RAID) in order to

aggregate two or more disks.

On account of the constraints imposed by DAS, dedicated storage infras-

tructures took their place in the market. This approach allowed data cen-

tres to create centralised storage pools, providing several benefits. Firstly,

it achieved management flexibility by allowing storage administrators to

arrange media in a single place, facilitating and lowering the cost of data

replication, backups and providing improved performance. Secondly, space

efficiency was naturally augmented, considering that disk space not in use

by one host could be easily allocated to another. Thirdly, scalability also

improved due to the ease of adding new media to such platforms. These

infrastructures are illustrated in Figure 1.2 and can be classified either as

Network-attached Storage (NAS) or Storage Area Network (SAN).

FC  SWITCHETH  SWITCH

SAN APPLIANCENAS FILER

SCSI

Typical
NAS

Setup

Typical
SAN
Setup

TCP/IP Network

SMB NFS iSCSIFCP

FC Network

SCSI

SCSISCSI

SCSISCSI

SCSI SCSI

Figure 1.2.: Illustration of two centralised storage solutions: Network-
attached Storage (NAS) and Storage Area Network (SAN).
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NAS aims to provide heterogeneous hosts with storage access at a file

level, usually over protocols such as Server Message Block (SMB) or Network

File System (NFS). Because it uses network protocols, it usually operates via

Internet Protocol (IP) networks and makes the resources visible to the hosts

as external media. Its counterpart, SAN, is a dedicated storage network

usually implemented over Fibre Channel Protocol (FCP), Fibre Channel

over Ethernet (FCoE) or Internet SCSI (iSCSI). It aims to provide hosts

with block level access to the storage resources, which are viewed as local

devices (even when implemented over Ethernet).

With these dedicated appliances providing greater scalability, smaller to-

tal cost of ownership (TCO) and ease of management, the concept of storage

virtualisation emerges, aggregating the abstraction layer that takes place be-

tween the host and the actual storage pool. In the same fashion as RAID

arrays (which may also be considered virtualised storage), the host is not

concerned with the exact composition of the underlying storage media but

instead sees a single logical storage pool.

To conclude the scenario change, we arrive at the aforementioned multi-

tiered VSS. It consists of a virtualised storage pool that is composed of

different tiers, each delivering different QoS characteristics. As an example,

Figure 1.3 illustrates a scheme where a host accesses what appears to be a

single logical volume. The volume is being delivered by a SAN appliance

and is composed of a series of RAID arrays, each of which possesses different

QoS characteristics.

FC  SWITCH

SAN APPLIANCE

SCSI SCSI SCSI
FCP

RAID0

RAID0 RAID0

RAID1

RAID5

SP
A

N

SSD SSD SSD SSD

SATA SATA SATA SATA

SCSI

Figure 1.3.: Illustration of a multi-tiered Virtualised Storage System (VSS).
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In such a typical scenario, the host’s operating system (OS) identifies a

single logical drive that would actually be composed of the span of three

different tiers. The first tier consists of four Solid State Disks (SSD) simply

striped as RAID0. The second tier is composed by two pairs of SCSI disks

(striped as RAID0), mirrored via RAID1. The third and last tier has four

SATA disks using distributed parity, in the fashion of RAID5. Each of

these tiers consumes a different amount of power, possesses a different cost

per GB of data and delivers different QoS characteristics. The details, pros

and cons of different RAID levels will be discussed in detail in Section 2.1.

While VSSs are effective at addressing management overheads and in-

creasing scalability, the issue of ensuring QoS remains an important con-

cern, especially since QoS can vary dramatically both across and within

tiers of the same virtual storage pool. Manual data placement and reorgan-

isation are very high overhead activities, especially in the face of rapidly

evolving requirements and data access profiles. The practical realisation of

a framework for the automation of such tasks has at least two fundamental

prerequisites. The first is the ability for users to easily and explicitly specify

the QoS requirements of their data in terms of factors such as performance

and reliability. The second is a mechanism for mapping those requirements

onto low level data placement and migration operations.

This view was supported by Steve Kleiman, Network Appliance’s Senior

Vice President and Chief Scientist, who is responsible for setting future

directions for the company. In his keynote address at FAST 2007, Kleiman

defined datasets as “a collection of data meaningful to the user or data

administrator having similar properties”. Furthermore, he affirmed that

these datasets have properties such as QoS and that it needs to ensured

that the “right decisions are made by the right people”, supporting the

idea that users and applications should specify dataset’s requirements and

storage administrators should find means to deliver it [50]. Kleiman then

concludes the presentation of his vision with ideas on simplification through

integrated data management and how this should facilitate the management

process, eventually setting a goal of 80% to the automation of the workflow.

Our interpretation on his view and ideas are expressed as the objectives of

this thesis and listed in the following section.
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1.2. Aims and Objectives

The primary objective of this thesis is to introduce and explore the concept

of matching desired QoS hints from datasets with the actual QoS deliv-

ered by a multi-tiered virtualised storage infrastructure. This should be

supported by related strategies for data layout evaluation (QoS-wise) and

techniques for data placement and migration.

In order to fulfil this, the following objectives must be achieved:

• Development of elegant and straightforward mechanisms for QoS spec-

ification. This involves the desired QoS specified by users or applica-

tions and the QoS delivered by the storage infrastructure specified by

a storage administrator.

• Development of a data layout evaluation strategy to assess the degree

of matching between QoS desired and QoS delivered. This involves

the creation of mechanisms, configured as a formula, for calculating

the score of a given data layout.

• Development of QoS-aware data allocation and migration algorithms.

This should utilise the strategies from the previous item in order to

make intelligent data allocation and to migrate data in order to im-

prove the layout score of a given filesystem.

• Implement the proposed framework in a working prototype. In or-

der for this prototype to be correctly assessed and easily deployed, it

should be usable in real world scenarios and compatible with existing

technologies.

• Implement support tools for the visualisation of data layout quality

QoS-wise. Ideally, this should provide means for the evaluation of

different QoS attributes individually.

• Using the prototype, evaluate the developed allocation and migration

algorithms employing a reliable benchmarking mechanism. This in-

volves comparing data layouts after using default allocators, QoS-wise

allocators and the migration mechanisms.
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1.3. Contributions

This thesis approaches the problem of data placement in multi-tier VSSs

from an innovative angle. Current solutions to ease the management burden

of such storage infrastructures rely mostly on workload analysis and QoS

inference, aiming at improved overall average system performance.

We propose a new approach, where users and applications can provide

hints regarding the desired QoS of particular datasets. In the meantime,

storage administrators can profile the storage infrastructure regarding the

QoS delivered. Allocation algorithms that take into consideration these

two parameters together with the current allocation scenario are capable of

improving data layout QoS-wise.

In the research literature, there have been many works, both from aca-

demic and industrial perspectives, that have proposed QoS frameworks and

policies that show the theoretical benefits of an automated approach to QoS

management in storage infrastructures [13, 99, 7, 9, 4, 42, 65]. Figure 1.4

illustrates the principle adopted by some of these solutions. It shows a

traditional SAN environment where a conventional virtualised storage opti-

misation system loops over four steps to attain an improved overall system

performance. Firstly, it analyses data workflow in terms of access types,

frequencies and sizes. Secondly, it hence infers a set of QoS requirements

(which may differ from actual needs). Thirdly, it plans a different data lay-

out that would better serve the inferred QoS. Finally, it modifies the data

layout, usually by migrating data, prior to looping back to the first step.

Conventional
Virtualised Storage

Optimisation
4) Apply new layout
3) Plan new layout
2) Infer requirements
1) Analyse workflow

FC  SWITCH

SAN APPLIANCE

SAN
Setup

Typical

FC Network

SCSI

SCSI

SCSI

SCSI

Figure 1.4.: A typical approach to improve overall system performance.
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1.3.1. Example State of the Art

To explain in further detail how other solutions attempt to tackle the is-

sue discussed in this research, we describe one popular and recent related

work in more depth. BORG [13], short for Block-reORGanization for Self-

optimizing Storage Systems, consists of a framework to maintain a cache

structure on-disk according to constant data workload analysis.

This cache aims to keep frequently accessed data close together on the

disk, minimising seek times and rotational delays during both read and write

operations. A background process stays responsible to populate the cache

according to workload analysis realised between the filesystem level and the

I/O scheduler for the underlying device. In the same fashion, the process

operates a write-back policy to flush the write buffer back to the correct

position on the disk, outside of the BORG partition.

The work was evaluated according to a Linux implementation of the

framework. It was tested under a variety of workloads, including a stan-

dard desktop environment, a developer’s workstation, a SVN server and a

web server. In all the listed cases, BORG provided an improved overall

performance ranging from 6% to 50%, being especially notable on cases of

non-sequential writing.

Figure 1.5 illustrates the BORG system architecture, indicating the area

of the storage stack that the kernel implementation is placed, as well as

pointing out the user space components. Analogous to the research done

during the elaboration of this thesis, BORG authors believe an implementa-

tion at the upper layers such as the VFS prevents the optimisation software

to access information regarding physical block addresses. On the other

hand, working directly on the device driver level is also complicated due to

the lack of logical information such as process IDs and timestamps, which

are usually lost during I/O scheduling.

BORG finds itself between the filesystem layer and the I/O Scheduler,

aiming for a generic solution that is filesystem independent. It works by

initially profiling I/O workloads and passing the information to a user-space

analyser and planner. New data layouts for the BOPT (BORG OPtimised

Target) partition is passed back to a reconfigurator in kernel space, which in

turns maintain data in the cache accordingly. At all times, an I/O Indirector

works as a mapper to rewrite read and write requests to point to BOPT.
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. . .

BORG

Figure 1.5.: BORG System Architecture [13].

It is interesting to note that the authors have explicitly decided to copy

data into the cache (or the BOPT, in this case) maintaining the position

that they lie in the filesystem instead of shuffling them in a different order. A

shuffling technique could easily be applied to deterministic workloads such as

application start-up or content indexing, thus optimising read performance.

However, the authors comment on the fact that some deterministic non-

sequential accesses may only be a temporary phenomenon, suggesting that

the data is likely to be accessed again at some different point in time on the

same order as they lie in the filesystem. This observation is supported by

Akyurek and Salem [4], who have argued in favour of copying rather than

shuffling [80, 96].

Finally, while BORG was initially tested for single-disk systems, its con-

cepts can easily be applied to dedicated volumes and on top of other strate-

gies listed in the related work. Nevertheless, BORG is clearly classified

with the solutions that attempt to automatically improve overall system

performance by analysing workloads and inferring access patterns.
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1.3.2. A New Approach

The primary contribution of this work is, for the first time, to realise a

practical and usable QoS framework within the context of a widely used

commodity filesystem, namely the Linux Extended 3 Filesystem (ext3fs).

This is the default filesystem for many Linux distributions, and consequently

has a very large installed user base. ext3fs will be discussed in detail,

alongside other filesystems, in Chapter 3.

There are several advantages to our realised enhancements to ext3fs.

Firstly, specification of QoS requirements is as simple as modifying file and

directory permissions with a chmod-like command; this is done by adding

QoS metadata to unused inode space. Secondly, the enhanced filesystem

is completely forwards and backwards compatible with existing ext3fs in-

stallations and vice versa; that is, filesystems may be mounted either way

without the need for any conversion. Thirdly, we have implemented mecha-

nisms which allow for the on-the-fly evaluation of the desired and delivered

QoS levels; this is supported by a suite of visualisation tools.

To maintain simplicity and elegance within our approach, we do not sup-

port the specification of complex absolute QoS requirements such as “95%

of I/O requests to file F1 must be accomplished within 10 ms” or “the file

F2 must be stored with an availability of over 99.99%”. Instead, we provide

support for combinations of simpler relative QoS goals such as “the file F1

should be stored in one of the most highly performant areas of the logical

storage pool” or “the file F2 must be placed in an very reliable storage lo-

cation”. Similarly we allow for system administrators to easily specify the

relative levels of QoS delivered by different range of block groups within the

pool; this process is supported by automated performance profiling tools.

Our approach, illustrated in Figure 1.6, also differs from solutions that

attempt to automatically deliver high levels of performance by analysing

frequency and type of data accesses [13, 99, 7, 4, 42]. These systems not

only ignore other aspects of QoS such as reliability (usually assuming that

the entire pool is reliable), space efficiency and security, but also do not

cater for the case where mission-critical data is infrequently accessed (and

therefore could be profiled as low in performance requirements). This last

example would be the case where a relational database table is infrequently

accessed but part of a transaction that, when executed, must conclude as
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rapidly as possible. While Figure 1.6 illustrates our approach using low,

medium and high QoS levels, any numerical score could be used in practice.

High R Performance
High W Performance
High Reliability

High W Performance
Low Reliability

High R Performance Med R Performance
Low W Performance
High Reliability

RDBMS Temporary Archive

Virtualised Storage System

...... ...

Low R Performance
Low W Performance
High Reliability

RAID5RAID0

High R Performance
Med W Performance
Low Reliability

Low W Performance
Med Reliability

Med R Performance

RAID1

Enhanced Linux Extended 3 Filesytem

User or Application Specified Relative QoS Hints

Storage Admin Specified Relative QoS Delivered

SATA SATASSD SSD IDEIDE

Figure 1.6.: Overview of our proposed approach, where QoS hints are pro-
vided by a user and matched through an enhanced filesystem
fabric to locations within a virtualised storage system profiled
by a storage administrator.

1.4. Further Context

This research takes place in the context of the EPSRC funded proposal

EP/F010192/1, entitled Intelligent Performance Optimisation of Virtualised

Data Storage Systems (iPODS) [51]. The proposal raises two key questions

from the rapid data growth observed in Section 1.1. Firstly, it asks how

best to map data onto physical disk devices. Secondly, it seeks to establish

the factors on which to base the choice of this mapping.
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To answer these questions the proposal focuses on multi-tier Virtualised

Storage Systems. As also discussed in Section 1.1, each tier delivers a dif-

ferent cost/capacity ratio against a certain Quality of Service. Examples of

such attributes are performance, reliability and power consumption. Due to

the usage of multi-zone disk drives and configurations such as RAID, both

discussed in Chapter 2, these variations also occur within these storage tiers.

Part of the main objectives listed on the proposal focused on numerical

and analytical analysis of such storage infrastructures. Within this scope,

both simulations and Markovian models were created to study the internal

behaviour of multi-zone disk drives and the usage of such disks in RAID

arrays and virtualised storage [53, 54, 55, 56, 57, 58, 59, 97]. Still within

this scope, studies modelling the response time [41] and wear levelling [100]

of flash drives were also conducted.

Another part of the proposal also listed main objectives relating to the

creation of data placement algorithms and migration policies for moving

data between tiers and across devices of the same tier. The present thesis

addresses these objectives by developing a more sophisticated fabric intel-

ligence, presented in the form of a filesystem that is able to autonomously

and transparently allocate and migrate data as solicited by the proposal.

This is achieved while observing the Quality of Service attributes required

by datasets and the capabilities delivered by the storage infrastructure.

Meeting further proposal requirements, this work introduces the means to

quantitatively assess the benefits of the newly presented algorithms. This is

accomplished in two ways. Firstly, a numerical score of the data layout eval-

uation which can be compared to other setups. Secondly, layout bitmaps

that instantly provide a perspective on the algorithm’s performance by dis-

playing how accurately required and delivered QoS attributes are matched.

1.5. Publications

The following publications arose from work conducted during the course of

this PhD:

• UK Performance Evaluation Workshop 2009 (UKPEW) [34]

presents the first steps towards the concrete realisation of a filesystem

that supports QoS metadata. It also introduces our data layout evalu-
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ation scheme and the first thoughts towards allocation and migration

algorithms. Material from this paper appears in Chapters 2, 3 and 4.

• 23rd Annual European Simulation and Modelling Conference

(ESM) [15] introduces techniques to explore the viability of storage

systems where data is placed intelligently depending on data-specific

QoS requirements and the characteristics of the underlying storage in-

frastructure. The studies also evaluate automatic profiling techniques

and simulation of data stream workloads.

• 27th IEEE Symposium on Mass Storage Systems and Tech-

nologies (MSST) [35] presents a functional QoS-aware filesystem, us-

ing a more elaborate version of the data layout evaluation formula

previously introduced. Intelligent allocation strategies making use of

such evaluation mechanisms are also implemented and benchmarking

is done using an extended version of Impressions [3]. Material from

this paper appears in Chapters 4 and 5.

An additional paper including extended experimental results is in prepa-

ration for submission to The Computer Journal.
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2. Multi-tier Virtualised Storage

Systems

The definition of virtualised storage is broad and may be used to describe

any sort of storage system where a host is incapable of identifying the exact

media details comprising the infrastructure at hand. Considering that, the

term may be applied, for example, to refer to a RAID array located inside

a computer, a NAS enclosure connected to a TCP/IP network or even a

SAN enclosure connected through a dedicated Fibre Channel network (as

discussed in Chapter 1).

This work, however, will allude to a Virtualised Storage System (VSS)

when referring to an external enclosure, presented as a SAN, in the form

of a centralised storage infrastructure that is perceived by the host system

as a local logical volume. This category of equipment includes (but is not

limited to) a series of hard disk drives, usually attached through controllers

in the fashion of RAID arrays.

The host system will therefore have access to the storage pool at block

level, instead of file level as is the case with NAS. This is a fundamental

difference considering the fashion we choose to approach the problem of

placing data with regards to QoS parameters, as some of our employed

techniques would be limited if we did not have access to information such

as the Logical Block Addresses (LBA) of the logical volume.

Inside the VSS, each collection of similarly arranged storage devices can

be classified as a tier. Considering that different types of collections may

be provided, either by the usage of distinct storage media or simply by

rearranging them in the controllers that they are connected to, different

benefits such as performance, reliability and space efficiency are yielded.

An enterprise storage system must therefore provide a multi-tiered solution,

since its applications will most likely have different requirements.
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2.1. Tier Organisation by RAID Level

In [92], it is suggested that an enterprise should define different storage

Service Level Agreements (SLAs) for its applications on five different tiers,

based on the requirements imposed by each application. This work, how-

ever, simplifies this definition to use tiers based on the four most commonly

used RAID levels. The following subsections describe each one of them and

are based on [76] unless noted otherwise.

2.1.1. RAID0 - Striped Volume

The RAID0 configuration is composed of a set of disks where blocks are

striped across the disks. Because there is no redundancy whatsoever, any

disk failure will result in data loss. The benefits of such approach are the

performance and space efficiency gains. Both read and write performances

are improved due to the RAID controller being capable of breaking down

I/O operations and realising them over more than one disk at once. The

space efficiency gains occur because no space is dedicated to data parity or

replication, sacrificing reliability. Figure 2.1 illustrates the configuration.
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A A A
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Figure 2.1.: RAID 0 - Data is striped over several disks.

In the above example, each block of data is illustrated as Ai. These are

RAID blocks, whose size is dictated by the stripe size, and should not be

confused with a filesystem datablock. They are distributed so that consecu-

tive data reside on different disks; this being the key for the striping of I/O

operations aiming for performance gains. The gains will also be dependent

on the size of the operation (that is, they must be over one block) and the

size of the blocks themselves, which is the same over the entire array and

which is configurable by the RAID controller.
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2.1.2. RAID5 - Striped Volume With Distributed Parity

The next configuration we consider is RAID5. Similar to RAID0, data is

striped across a set of disks. For every set of blocks, however, a parity is

calculated and distributed in a rotating fashion among the set as shown

in Figure 2.2. When compared to the less popular RAID levels 3 or 4,

where the data parity is stored on a dedicated disk, RAID5 provides better

performance by eliminating the bottleneck imposed by the dedicated disk,

in view of the parity update required by any write operation to any disk in

the array. On the other hand, in the case of a disk failure, RAID5 will still

operate in degraded mode until the failed disk is rebuilt on a spare.
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Figure 2.2.: RAID 5 - Striped set with distributed parity.

2.1.3. RAID6 - Striped Volume With Double Distributed

Parity

The RAID6 configuration appears identical to RAID5, but uses two par-

ity blocks (usually named P and Q) instead of one. However, the exact

implementation of the parity scheme may vary. According to the Storage

Networking Industry Association (SNIA), the definition of RAID6 is “any

form of RAID that can continue to execute read and write requests to all

of a RAID array’s virtual disks in the presence of any two concurrent disk

failures” [11]. A possible implementation is illustrated in Figure 2.3.

Due to this vague definition, different vendors have implemented RAID6

in different ways. As an example, IBM presented EVENODD [14], which

uses an exclusive-OR based parity scheme instead of Reed-Solomon error-

correcting codes [77]. Another example is a Network Appliance’s technique

called Row-Diagonal Parity [23] which also uses exclusive-OR parity.
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Figure 2.3.: RAID 6 - Striped set with distributed double parity.

The main motivation for the creation of such a configuration was the

probability of data loss during the recovery process upon a first disk failure

in the array. Given that the reliability of hard disk drives does not increase

in the same pace as their capacity, larger RAID5 arrays will be more likely to

sustain an unrecoverable disk error during the recovery process [21]. RAID6

improves on that by supporting a secondary drive failure.

2.1.4. RAID10 - Striped Mirrored Volume

The RAID10 configuration is composed by nesting RAIDs level 0 and 1

together. While RAID0 provides a striped set and RAID1 provides mirror-

ing, RAID10 offers a RAID0 array of a mirrored set of disks, as shown in

Figure 2.4. While this model supports multiple drive failures, as long as no

two drives fail in the same mirror, some space penalty is imposed by the

redundant data present in the array. The performance gains or losses are

highly dependent on implementation details.
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Figure 2.4.: RAID 10 - Striped array of a mirrored set of disks.
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Comparing all configurations, we note that the performance of RAID10

and RAID5 may vary depending on the size of reads or writes being exe-

cuted. That will happen because RAID5 requires the parity in the array

to be updated with every write, thus enforcing at least one more read if

not every block in the stripe is being updated. In [54], these details and

differences are measured and analytically modelled, allowing an approxima-

tion to the response time of I/O requests to be predicted. Since RAID6 is

not supported by the hardware used in our experiments and the lack of a

standard software solution, we have used RAID0, RAID5 and RAID10.

2.2. Usage of Multi-zone Drives Within RAID

Managing the placement of data in multiple tiers that present distinct char-

acteristics is a complicated task. This task does not get any easier when

tiers are composed by storage media with attributes such as those of multi-

zone hard disk drives, that provide a larger number of sectors on different

parts of the platters, and which therefore have different performance levels

depending on the block address accessed.

The usage of disks such as Solid State Drives (SSDs) creates a different set

of challenges that can be more easily addressed. It is possible to say that

SSDs have a constant (and nearly zero) seek time, as well as a constant

throughput throughout different addresses. The write speed, however, may

suffer for small operations due to the physical organisation of the drive,

that usually requires a whole cell to be rewritten even for the smallest data

modification. In light of these elements, we would recommend that SSDs

were grouped in a separate, exclusive RAID group and considered as a

separated tier from other drives with different characteristics.

Magnetic hard disk drives, on the other hand, contain a collection of plat-

ters that spin around a spindle. This allows for a mechanical arm to move

across the top of each platter and reach the entire media. The arm positions

a head capable of accessing data through read and write operations [81].

Originally, these platters were divided into areas called sectors and dis-

tributed on the disk as it is illustrated in Figure 2.5. This layout infers that

sectors on the edge of the media are bigger in area than those near the cen-

tre. Because the angular velocity with which a platter rotates is constant

across the media, the time taken to read any two sectors is very similar.
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Figure 2.5.: Single-zone disk architecture illustrated with one platter.

This design facilitated the old addressing scheme known as Cylinder-

Head-Sector (CHS), which used a combination of parameters to calculate

the position of a sector. However, this scheme does not take advantage of

two key factors provided by the disk’s surface geometry towards its outer

edge. Firstly, the linear speed of the disk surface is faster, and that could be

used to improve the performance of read and write operations. Secondly, the

surface area is bigger, allowing for a greater number of sectors and therefore

a larger capacity drive.

With advances in technology and the adoption of a sequential address-

ing mechanism known as Logical Block Addressing (LBA), hard disk drive

manufacturers were capable of increasing the number of sectors per track

towards the edge of each platter. Such disks were named multi-zone after

their varying number of sectors per track. A zone, in this case, would be a

collection of tracks containing the same number of sectors. Figure 2.6 illus-

trates the layout changes in a simplified version of the model. It shows three

tracks, three zones and indicates the edge as the “outer zone” containing

the greater number of sectors.

Inner Zone

of sectors
Greater #
of sectors

Arm Assembly
Arm

Head
Spindle

1 Sector

Outer Zone

Smaller #

Figure 2.6.: Multi-zone disk architecture illustrated with one platter.
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The performance of I/O operations on such drives varies drastically across

the disk. To quantify and illustrate these variations, we have written a

simple performance measurement utility to evaluate the time taken to se-

quentially read 100 MB buffers from a 500 GB disk. We profiled a Seagate

ST3500630NS multi-zone hard disk drive and plotted the results on Fig-

ure 2.7, expressing the read throughput (in MB/s) across the disk.
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Figure 2.7.: Throughput of a 500 GB multi-zone disk, measured via sequen-
tial reads of 100 MB blocks of data.

The plot shows that read operations on the edge of disk (near LBA 0) are

almost twice (98%) as fast as those performed near the centre of the disk.

This is due to the increased linear speed with which the heads pass over the

edge of the platters, thus reducing the transfer time of operations on those

sectors. We have also conducted measurements with varying buffer sizes as

well as with write operations. For a single drive, however, these parameters

did not affect the illustrated throughput significantly.
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2.3. Data Placement Within VSSs

The usage of multi-zone hard disk drives within VSSs brings further compli-

cations to the matter of data placement. As shown on the previous section,

the I/O performance of such disks will vary considerably depending on the

part of the media in use. When they are associated in RAID arrays, the lim-

its of these variations will naturally grow. This will cause situations where

parts of an apparently low performance tier provide better throughput than

parts of a high performance counterpart within a VSS.

To quantify such variations, we have assembled three different RAID ar-

rays (levels 0, 10 and 5) and profiled them with read and write operations

of varying buffer sizes. These RAID levels are popular because they pro-

vide good performance (RAID 0), good reliability (RAID 10) and a com-

bination of both (RAID5). The enclosure in use is an Infortrend EonStor

A16F-G2430 connected via a dual fibre channel interface to a Ubuntu 7.04

(kernel 2.6.20.3) Linux server with two dual-core AMD Opteron processors

and 4 GB RAM, thereby characterising a SAN environment. Each array

consists of four multi-zone Seagate ST3500630NS hard disk drives.

Naturally, the address space of RAID10 and RAID5 will be smaller than

that of RAID0 due to data replication (as discussed in Section 2.1). With

RAID5 providing some reliability, 500 GB of data is dedicated to keep parity

information. On the other hand, RAID10 assigns 1 TB for mirroring.

Regarding the performance variations, we can observe the RAID0 mea-

surements in Figures 2.8(a) and 2.8(b), which illustrate the throughput of

sequential read and write operations respectively. It is possible to note that

small writes (using 1 MB buffers) will happen at a rate of around 55 MB/s

in the slowest areas. By contrast, similar sized reads (using 2 MB buffers)

can be achieved at almost 350 MB/s on the fastest parts of the array.

This confirms that, unlike the single disk scenario, where the fastest zones

were about 98% faster than the slowest counterparts (independent of buffer

sizes), the impact of multi-zone hard disk drives in RAID arrays is much

bigger (up to around 500% on our RAID0 experiment). Such performance

variations suggest that we must be careful when classifying different tiers

regarding their QoS attributes. Figures 2.9(a) and 2.9(b) exhibit the re-

sults for read and write operations in RAID10 respectively. Figures 2.10(a)

and 2.10(b) show the throughput for RAID5 in the same manner.
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Figure 2.8.: Throughput of a RAID0 array using multi-zone hard disk
drives.
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Figure 2.9.: Throughput of a RAID10 array using multi-zone hard disk
drives.
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Figure 2.10.: Throughput of a RAID5 array using multi-zone hard disk
drives.
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Prior studies on data placement within multi-zone devices have suggested

different approaches for both single disks and RAID arrays. For single

disks [37], it is suggested that the zones be identified and their performance

attributes mapped. A special filesystem would then keep track of file access

profiles and move data that is accessed more often (so called “hot” data) to

the fastest areas of the disk.

Regarding multiple disk arrays, Zoned-RAID [49] proposes that a block

level approach should be used (instead of a file level equivalent). The con-

cept introduced by the authors improves the performance of traditional

RAID levels 1, 5 and 6 by taking advantage of the zone properties in multi-

zone devices and arranging blocks appropriately.

A slightly different approach, which has some similar ideas to the ones we

have introduced, is proposed in [5]. There, a benchmarking of the system is

previously realised and maps are constructed gathering information on the

specifics of the disks underneath. While this is not limited to multi-zone

devices, these maps are then used to predict the performance of the system

at any given logical address.

In order to create a contained framework capable of handling both the

distinct QoS attributes of multiple tiers and the QoS requirements of differ-

ent datasets, we have explored the idea of integrating our scheme into the

upper layers of an existing operating system’s filesystem. While the exact

filesystem to use would depend on the analysis realised in the next chapter,

this layer is a natural choice for our work considering it is responsible not

only for hosting data such as files and directories, but also for the allocation

mechanisms.
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3. Filesystems

In order to evaluate and discuss how blocks of data are allocated and used

within filesystems, it is important to first understand the structure of such

filesystems and how they are organised into a logical volume. This section

will first discuss how several storage tiers can be organised into one single

logical volume. Next, we explain the Master Boot Record (MBR), which is

the structure that lays on the first sector of every partitioned logical drive on

the basic disk architecture [18] and then elaborate on three popular filesys-

tems, emphasising their on-disk layout, benefits and drawbacks. Finally, we

settle on ext3fs as the filesystem to use in this work.

3.1. Single Filesystem Over Several Storage Tiers

While some storage solutions are capable of exporting a single logical volume

composed of several different tiers, others will export each tier individually.

In order to create a single filesystem over several tiers, unless the filesystem

itself supports multiple devices, it is first necessary to assemble the tiers as

a single volume.

Using a tool such as the Linux’s Logical Volume Manager (LVM) [62],

we are capable of assembling a single logical volume that is composed of

different devices. This is done in such a way that the logical block addressing

starts at the beginning of one tier and increases linearly until the end of the

last. Figure 3.1 illustrates this concept.

In order for LVM to run and setup several devices into a single logical

volume, at least part of the operating system must be up and running. This

means that a “boot partition cannot reside on an LVM volume because the

[...] boot loader cannot read it” [78].

However the nature of the volume (boot or data), every volume is usually

organised in partitions. The next section describes the MBR, which is a

standard for volume partitioning popularised by IBM in the early 80s [86].
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3.2. Master Boot Record

The Master Boot Record (MBR) is a structure that resides in the first sector

of every partitioned data storage device in the basic disk architecture. It

uses the whole sector (512 bytes) and contains both the instructions to boot

up a system and the primary partition table. If the device in question is

not used for booting purposes, then only the partition information will be

relevant. Figure 3.2 illustrates the structure of the MBR. The remainder of

this section is based on [85] unless stated otherwise.

55 AA

Partition 1 (16 bytes)

Partition 2 (16 bytes)

Partition 3 (16 bytes)

Partition 4 (16 bytes)

Boot Code

(446 bytes)

Figure 3.2.: Master Boot Record (MBR) in the basic disk architecture.

As shown in the figure, the first 446 bytes of the MBR is composed of the

machine code responsible for booting up the system. On a simple home com-

puter, this is the code loaded by the Basic Input/Output System (BIOS) af-

ter performing the Power On Self Test (POST). It is interesting to note that

more elaborate (and larger than 446 bytes) boot loaders (such as GRUB [66])

can be loaded by the MBR boot code from some pre-specified special boot

partition. The boot loader may also offer a means of loading a different

partition table. On a VSS, where the logical volume is usually used simply

as a storage media, this part of the MBR can be ignored.

Next to the boot code lies the partition table, occupying 64 bytes. That

space is organised as four primary partition records of 16 bytes each. When

more than four partitions are needed, the concept of extended partitioning

can be used, being the extra partitions defined outside of the MBR. As of

today, several different techniques exist for this purpose [26]. The structure

of a 16 byte partition record is illustrated in Figure 3.3.
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BF CHS BEGIN PT CHS END LBA BEGIN NUM OF SECTORS

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 3.3.: A 16 byte partition record.

The first byte of this record, illustrated in the figure by BF (meaning boot

flag), identifies whether the partition should be bootable or not. The CHS

BEGIN and CHS END fields will contain the position of the beginning and the

end of the partition, respectively, addressed using the cylinder-head-sector

scheme. The PT flag stands for partition type and is of particularly interest

to this work because it identifies the filesystem type that resides in that

partition. Last, the LBA BEGIN and NUM OF SECTORS fields will identify the

logic block address for the beginning of the partition and the number of

sectors used by it.

At the end of the MBR, there is also a two byte signature (0xAA55) used

to suggest that no corruption has occurred. The value 0x55 may appear

first on the disk layout because of endianness issues.

While some partitions may be used for the storage of raw data, as is

required by certain applications [28], most systems will have them formatted

to support a filesystem. The next sections will compare and discuss the

structure of two commonly used filesystems, explaining their benefits and

drawbacks.

3.3. The FAT Filesystem

The FAT filesystem, named after File Allocation Table, was introduced in

the late seventies for the IBM PC machine architecture and incorporated

into the first version of MS-DOS shortly after. Because of its simplicity, the

filesystem was also used in other operating systems at the time and today

it is still used in a series of embedded devices [87]. Its limitations, however,

as will be shown later in this section, led to the usage of more complex and

elaborate filesystems in newer operating systems. Unless noted otherwise,

this section was written based on the Microsoft specifications [24, 27].

The version of FAT today referred to as FAT12 due to the file allocation

table consisting of 12 bit pointers, underwent several upgrades over time

to support additional features and higher capacity media. Among these
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features, it is important to name the support for long file names (bigger than

eight characters plus a three character extension) and the increasing size of

bits in the file allocation table, making it possible for a single filesystem to

be used in larger partitions, once it could address more space.

Despite these upgrades having slightly changed the layout of the filesys-

tem, the basic format has remained the same since the second version of

MS-DOS. At the beginning of the filesystem there is a reserved region con-

taining the boot sector (BS) and the BIOS parameter block (BPB), followed

by two copies of the file allocation table. Next, data sectors occupy all the

space until the end of the filesystem. This format is illustrated in Figure 3.4

without any particular dimensional scale.

Remaining Reserved Region

Boot Sector (11 bytes)

BIOS Parameter Block (25 bytes)

(n_clusters * fat_size bytes)

First File Allocation Table

Second File Allocation Table

(n_clusters * fat_size bytes)

Root Directory and Data Region

(n_clusters * cluster_size bytes)

Figure 3.4.: The FAT filesystem layout.

The BS begins with a 3 byte jump instruction which points to executable

code located in the remaining reserved region. That is necessary in view

of the way the MBR boot loader works; after locating a primary boot par-

tition, it will start executing code at the beginning of that partition. The

next 8 bytes in the BS is called Original Equipment Manufacturer (OEM)

Name and is usually set to “MSWIN4.1” for compatibility issues, but most

operating systems will not pay any regard to this field.
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Next is the BPB, which holds crucial information on how the operating

system should handle the remainder of the filesystem. This includes aspects

such as the FAT version (12, 16 or 32 bits), the size of the reserved region,

media description (such as floppy disk or hard drive, including geometry

data) and the cluster size. A cluster is a group of consecutive sectors in

the storage media and its size plays an important role in the limitations of

FAT, as shall be discussed further in this section. More details on the BS

and BPB can be obtained in [25].

Up to this point, FAT12, FAT16 and FAT32 shared exactly the same

data structures. However, FAT32 introduced a 28 byte BPB continuation

which includes extended information and reserved space in an attempt to

avoid other structural changes in future versions of the filesystem. Following

that, there is a 26 byte volume information field which is shared by all FAT

versions, but FAT12 and FAT16 will have this located right after the BPB,

since the extended information is not present on these versions.

After the end of the reserved region, which may vary in size, there are two

copies of the file allocation table. While one copy would suffice, a second

copy has been implemented in an attempt to aid recovery of a filesystem in

the event of a sector used by the file allocation table becoming bad. Because

old hard disk drives used to develop bad and unusable sectors over time,

the occurrence of such misfortune over the allocation table would result in

the loss of the whole filesystem.

Before explaining how the file allocation table works and discussing its

advantages and disadvantages, it is important to understand the last item

illustrated in Figure 3.4, namely the root directory and data region. While

the former was made extinct in FAT32 by having been incorporated within

the latter as a regular directory, the root directory in FAT12 and FAT16

is a preallocated fixed space for the files in the top level of the filesystem,

which is organised as a tree. Disregarding the details on how long file names

are implemented, each directory is organised as an array of linear 32 byte

records, each record indicating either a file or a subdirectory.

While this 32 byte record holds information such as the file (or subdi-

rectory) name, attributes and timestamps for creation or modification, the

relevant field for comprehension of the file allocation table is the one indicat-

ing the file’s first cluster. This field addresses the cluster in the data region

where the data for the file starts. Not only does this allow the operating
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system to read the proper sector for the beginning of the file’s data, but

it also indicates an index for consulting the file allocation table, which will

provide the next cluster used by the file or indicate if it is finished.

EXAMPLE1.TXT

0x000073A2
First Cluster

Name

Other Metadata
..........

0x000073A2

0x000073A3

0x000073A40xFFFFFFFF

0x000073A4

0x000073A3

0x000073A1

0x000073A5

Directory Entry File Allocation Table

Figure 3.5.: The file allocation table and a contiguously allocated file.

Figure 3.5 shows details of the file allocation table structure. It shows an

example of a directory entry, which could be located in the root directory,

presenting a file named EXAMPLE1.TXT whose first cluster of data resides

in the media address 0x000073A2. Considering that the contents of this

file is big enough to occupy three clusters, the file allocation table is then

used to find the subsequent clusters. According to the example, this file

was allocated contiguously, having the next two clusters of data located at

addresses 0x000073A3 and 0x000073A4. The special address 0xFFFFFFFF

denotes that no clusters are to follow.

However, when a file is deleted from the filesystem, the space for that file is

freed for future usage. This implies that when another file is created, it will

reuse that same available space. When the new file requires more clusters

for its data than is contiguously available, or if a previously allocated file

grows, therefore occupying more space, fragmentation may occur. Figure 3.6

illustrates the allocation of a file named EXAMPLE2.TXT and how the file

allocation table will look like with respect to the data clusters for this file.

This also applies for directory entries.

In the figure, it is noticeable that the second chunk of data is allocated in

the cluster 0x0094E135, while the first and second chunks are considerably

distant in the storage media, being located at 0x00003CD2 and 0x00004B11

respectively. This kind of fragmentation is likely to cause the file access

to be slower if the media being used is, for instance, a hard disk drive.
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Directory Entry File Allocation Table

0x00003CD1

0x0094E135

0x0094E136

0x00004B11

Figure 3.6.: The file allocation table and a fragmented file.

The reason for this increase is that accessing noncontiguous data will cause

mechanical drives to move the head of the disk to the proper place (seek

time) and rotate the disk to the proper track (latency time).

Properly avoiding fragmentation is still an open challenge in the design

of modern filesystems and different techniques have been proposed in an

attempt to do so. As will be discussed in Section 3.4, some filesystems

reserve disk space for files to grow [16]. Others attempt to delay as much as

possible the writing of data to the disk, avoiding fragmentation when several

files are written to the disk concurrently [67, 94]. Our research presents a

novel technique which will be discussed in Chapter 4.

Regarding these issues, the concept of cluster also plays an important

role. In an attempt to support larger partitions, reduce fragmentation and

keep the file allocation tables small, FAT will group sectors together in

clusters. In doing so, the size of each block of data is actually increased in

multiples of the sector size, therefore reserving some space for small files to

grow. Naturally, small files that do not grow will occupy space in multiples

of clusters, making hard disk free space unusable in the event of a large

number of such files. This is also called internal fragmentation.

Nevertheless, the size of the filesystem is still limited by the number of

how many clusters the allocation tables can address. In FAT12, filesystems

of up to 8 MB are supported when using 4 KB clusters. In FAT16, not only

are 4 bits added to cluster addressing, but also cluster sizes of up to 64 KB

can be used, allowing for filesystems as big as 4 GB. Microsoft, however,
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states that no more than 32 KB should be used as the cluster size, as it will

result in compatibility issues with other vendors. The allocation table for

FAT32 uses 28 bits for addressing (4 bits have been reserved). Considering

the same 32 KB cluster size, filesystems of up to about 8 TB are supported.

3.4. The Extended 2 and 3 Filesystems

The Extended 2 Filesystem (ext2fs) is native to the Linux operating system

and was based on the UNIX filesystem first introduced by Bell Laboratories

in the early seventies [70]. The Extended 3 Filesystem (ext3fs) introduced

journalling techniques to ext2fs, but shares exactly the same structural

concepts with no modifications made to it [91]. While journalling tech-

niques aim to allow systems to restart quickly [44], this section will discuss

the structural aspects of ext2fs. Unless noted otherwise, this section was

written based on [16].

In contrast to the FAT filesystem discussed in the previous section, ext2fs

was designed for operation on hard drives and not floppy diskettes. Con-

sidering that hard drives are substantially larger, implementing a big file

allocation table at the beginning of the media would cause severe increases

in seek time. To avoid that, ext2fs divides the filesystem into so-called

block groups.

Each block group is equal in size, and composed of a predefined number

of blocks which is calculated based on the size of a block. If compared to

the FAT filesystem, a block would be similar to a cluster or a collection of

sectors. ext2fs supports blocks ranging from 1024 to 4096 bytes, which

must be defined at formatting time. How the size of a block affects the size

of their groups will be explained along with bitmaps later on this section.

Block Block group 0 Block group n
Boot

n blocks

Super
Block

Group
Descriptors

Datablk
Bitmap

1 block

Data blocks
inode
Table

inode
Bitmap

1 block n blocks1 block n blocks

Figure 3.7.: The Extended 2 Filesystem layout.
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With the concept of block explained, Figure 3.7 illustrates the structural

layout of ext2fs. At the beginning, a block is reserved for a boot loader,

similar to the reserved region that leads the FAT filesystem. Soon after

that, one or more block groups follow, each one sharing an identical layout.

The first structure within a block group is always a copy of the filesystem’s

Super Block, which occupies one block. These copies should be identical

across block groups, but usually only a few backup copies are kept up-to-

date for performance reasons. The Super Block itself contains a list of these

copies. On regular maintenance checks, all the others may be automatically

updated. In the event of one of them becoming corrupt, a restoring utility

(such as e2fsck) could refer to one of these backups. The Super Block is a

structure similar to the BS and BPB structures of FAT, as its purpose is to

hold general filesystem metadata, such as the block size and the number of

free blocks.

Following the Super Block comes an array of group descriptors, which

occupy 32 bytes each. The array holds copies of the group descriptor for

each group and is also duplicated in each block group in the same way as

the Super Blocks are for recovery purposes. A group descriptor will hold

information on the position of the block and inode bitmaps, some indices

and other data that help the block allocator to promptly identify the amount

of free space for inodes or directories within the group.

The inode and block bitmaps occupy one block each. They are basically

an array of bits, and each bit indicates if the inode or block is free (if the

bit is zero) or not (if the bit is one). In view of that, supposing a block

size of 1024 bytes, one block bitmap is capable of addressing availability

information for 8192 blocks. That implies that each block group in the

filesystem will have exactly 8192 blocks, except for the last one which might

have less if the total filesystem size is not a multiple of the block group size.

In the same way, no more than 8192 inodes are allowed to be addressed by

the inode table, which may also occupy more than one block. This table is

formed by an array of inode records for the block group, each one occupying

128 bytes. The record contains information such as the entry name, type

(directory, regular file, etc.), flags, access rights and pointers to datablocks,

to name a few. Differently from the concept where a file allocation table is

used to map datablocks throughout the filesystem, an inode keeps track of

all allocation data itself.
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Figure 3.8.: Datablock addressing within the inode.

Figure 3.8 illustrates the i block field within an inode record, which is

an array of pointers to logical datablocks. By default, this array is fifteen

4 byte words long, as in the example contained in the figure, but this size

may vary on custom setups. The array is divided into four different indexing

schemes:

• Direct Addressing: the pointer directly addresses the logical datablock.

This is used for entries of up to 12 ∗ b bytes, where b is the block size,

once contents can be accessed without further index seeking. The

drawback is that indexing too many logical datablocks would result

in bigger inode records with unused space for small entries. When the

contents exceed 12 ∗ b bytes, indirect addressing is used.

• Simple Indirect Addressing: in this method, a pointer will refer to a

datablock which contains an array of direct addressing pointers. This

array is used in the same way as explained in the previous item for the

first twelve positions of i block. Simple indirect addressing supports

up to b/4 pointers per block, but requires extra reads from the storage

media in order to determine the final logical datablock address. In the

figure, the first block addressed would be block 12.
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• Double Indirect Addressing: when the contents of a filesystem entry

is larger than (b ∗ 12) + (b ∗ (b/4)) bytes, ext2fs starts using a dou-

ble indirect addressing scheme. With this method, the logical block

pointed to by i block[13] will host an array of simple indirect ad-

dress pointers, which will refer to the actual datablocks as explained

in the previous items.

• Triple Indirect Addressing: finally, the last position of the i block

entry will point to a logical block that hosts an array of double indirect

address pointers. The first actual datablock pointed to by this record

will have logical address ((b/4)2) + ((b/4) + 12), while the last will

have logical address ((b/4)2) + (2 ∗ (b/4) + 11).

It is important to notice how this addressing scheme favours small files.

While using indirect addressing allows for larger contents, small files (of up

to 12 ∗ b bytes) will always be addressed via a direct method. In this way,

no extra reads have to be done to the storage media in order to obtain the

subsequent indexing tables. Table 3.1 displays the amount of data that can

be addressed with each method depending on the block size.

Block size Direct 1-Indirect 2-Indirect 3-Indirect

1024 B 12 KB 268 KB 64.26 MB 16.06 GB
2048 B 24 KB 1.02 MB 513.02 MB 256.5 GB
4096 B 48 KB 4.04 MB 4 GB ∼ 4 TB

Table 3.1.: Data upper limits for addressing methods.

According to these calculations, filesystems formatted with 1 KB blocks

could not support files larger than about 16 GB before they would run out

of pointers. The table also shows that in a 4 KB block filesystem, files up

to about 4 MB could have their first 48 KB accessed by direct addressing,

while the remainder would be referred to by the first indirect block. Other

modern filesystems make use of extents, which resemble this technique but

allow for files of virtually any size, since the array of pointers is organised

as a tree and may contain many indirect nodes for addressing [67, 94, 44].

The real limit for file size is actually imposed by the i blocks inode record,

which is 32 bits long and indicates the number of 512 byte sectors addressed

by the file (limiting the file size to 2 TB in ext2fs).
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While this concludes a basic structural understanding of a block group

within an ext2fs and therefore the structure of the whole filesystem itself,

other relevant features are implemented in the kernel side of the supporting

software to improve performance. Among these features, we highlight the

memory structures and the block allocator, considering some of the data

structures are kept in memory with a different organisation.

Because ext2fs has a complex structure and is not as straightforward as

a FAT filesystem, the Linux kernel implements several strategies to improve

overall I/O system performance. The first of these is a memory cache of the

most used filesystem data structures. Table 3.2 shows the caching policy in

the Linux 2.6 kernel regarding these structures, as well as the name of the

representing structure on disk and memory.

Type Disk data structure Memory data structure Caching policy

Super Block ext2 super block ext2 sb info Always cached
Group descriptor ext2 group desc ext2 group desc Always cached
Block bitmap Bit array in block Bit array in buffer Dynamic
inode bitmap Bit array in block Bit array in buffer Dynamic
inode ext2 inode ext2 inode info Dynamic
Datablock Array of bytes Buffer Dynamic
Free inode ext2 inode None Never
Free block Array of bytes None Never

Table 3.2.: Linux 2.6 caching policy for ext2fs data structures.

The table shows that the most accessed data structures are always cached,

namely the Super Block and the group descriptors, as most filesystem op-

erations are likely to change them. They are loaded into the kernel page

cache once the filesystem is mounted and kept there until unmounting time.

On the other hand, free blocks and free inodes are never cached since they

do not represent any meaningful information. In between lie structures that

are loaded into memory only when they are used. For instance, an inode is

kept cached while a file is open and in use.

Another interesting observation can be made by examining the difference

between the second and third columns of the table. The Super Block and

inode structures, while kept into memory, have different data structures

associated with them. The discrepancies are given by a few extra cache

pointers and counters which optimise the way the Linux kernel references

and allocates data within the filesystem.
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The second strategy for improving overall I/O system performance re-

lates to the operation of the allocator. While the allocator is implemented

through several different functions inside the kernel, it can be semantically

divided into two distinct parts. The first part is responsible for allocating

new inodes and the second part is responsible for allocating new datablocks

and is invoked whenever new storage areas are required by the inode.

When allocating a new inode, the kernel first identifies whether the new

entry is a directory or not. For new directories whose parent is the filesys-

tem’s root, a free inode is searched in a different block group than the parent,

since it is likely that child and parent are not related. If the parent is not

the filesystem’s root, then the allocator will try to find an inode in the same

block group as the parent. Exceptions will happen when the number of al-

located inodes in the chosen block group is greater than a certain threshold

related to the filesystem’s average, as the kernel also tries to distribute data

throughout the storage media. In those cases, neighbouring block groups

would be considered better candidates.

In the case where the new inode does not refer to a directory, the allocator

will always try to find space for the new entry in the same block group as

the parent directory. If that group’s inode table has no available entries or

does not satisfy similar threshold conditions, as mentioned before, a new

block group is searched using a heuristic that helps similar files for that

parent directory to be allocated in similar block groups [32]. If this search

also fails, a linear lookup is performed across the whole filesystem.

By attempting to keep related filesystem entries close to each other in-

side the media, the kernel reduces the seek time performed by the disk drive

whenever these entries are being accessed. If compared to the FAT filesys-

tem, where the file allocation table is always stored in the beginning of the

partition, block groups are also an improvement since the inode tables are

kept close to the actual datablocks.

Regarding the datablock allocator, whenever a new datablock is required

for a filesystem entry, the Linux kernel will first try to allocate the new space

contiguously to previously allocated blocks for the given inode. When that

is not possible, it will try to find space inside the same block group and

then move forward to neighbouring block groups and so on. By trying to

allocate contiguous space prior to any other position in the partition, the

allocator also helps to reduce file fragmentation.
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In a last effort to reduce fragmentation, the block allocator also imple-

ments a pre-reservation technique. When invoked to allocate one datablock,

up to eight other contiguous blocks are reserved for the inode. The reserved

blocks are freed when the inode is closed, truncated or written in a non-

sequential way, if the write operation is the one that initiated the allocation

in the first place. This technique proves to be effective because when copy-

ing a file, for instance, the allocator has no way of knowing in advance the

total size of the entry.

Despite the fact that these techniques make the Linux Extended Filesys-

tems a robust solution and the default choice for most Linux distributions,

they were conceived to work on a regular hard disk drive. That means

that the way data is allocated and distributed across a partition may not

be the best choice for a scenario where the media is composed of multiple

tiers. The next chapter will discuss our experiments and proposals for a new

filesystem which takes advantage of a storage media composed of physical

layers with different characteristics.

3.5. The Extended 4 Filesystem

Because ext3fs is hard limited by design to 16 TB per filesystem, patches

were written in 2006 to slightly alter the data layout and circumvent this

limit. This broke compatibility of patched setups with stock kernels and

therefore encouraged developers to create a new filesystem branch, prevent-

ing different installations of ext3fs from being incompatible. Unless noted

otherwise, this section was written based on [67, 94].

Named ext4fs, this new branch kept many similarities with its predeces-

sor. Like ext3fs, it is organised as a Super Block followed by block groups.

The layout of a block group is also similar to ext3fs, containing the same

structures in the same order (as previously shown in Figure 3.7).

Considering the developers were no longer bound by the concepts that

defined ext3fs, the opportunity to review some of this filesystem’s limita-

tions appeared. In order to increase filesystem capacity, the amount of bits

used to address the total number of datablocks was increased from 32 to

48. With 4 KB datablocks, this means filesystems could be as big as 1 EB

(1024 PB) in practice. If such a limit proves to be small in the future, the

developers plan to use the full 64 bits.
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This led to the first difference in filesystem structure. Because every block

group must keep a copy of every block group descriptor, the filesystem’s size

was still limited to the amount of block groups that could appear (a total of

256 TB). To fix that, ext4fs supports logical or flexible block groups that

increase the size of datablock bitmaps and inode tables, allowing for several

block groups to be considered as one. This feature also helps speeding up

filesystem checks, bypassing block group size limits and plays an important

role in the data allocators.

As discussed in Section 3.4, ext3fs allocators are heavily based on the

notion of a block group, trying to keep what it considers to be similar

files and directories close together in the filesystem. In ext4fs, because

several block groups may be addressed as one, larger amounts of data can

be allocated with fewer search operations for suitable space.

With the support for larger images also came the need to support larger

files. ext3fs supports files of up to 2 TB and uses an indirect addressing

scheme that is efficient for sparse or small files, but inefficient for large

files [17]. ext4fs uses the same scheme, but if mounted with the extent

option, can make use of extents, a technique already popular in other modern

filesystems such as XFS [88] or JFS [44].

Extents map a range of datablocks, allowing for an inode to address a

starting datablock and a length of blocks that follow. This makes even more

sense with the flexible block feature, since an amount of datablocks larger

than the block group can be contiguously addressed. Figure 3.9 illustrates

this idea, with an extent mapping a datablock that starts in block group

BGi and has a block count that exceeds that block group, finishing in BGi+1.

The shaded areas represent addressed blocks.

start

length

BG 0 BG i BG nBG i+1

extent

49152

Figure 3.9.: The concept of an extent, mapping a starting datablock in a
block group and having a block count that exceeds that group.
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The inode structure is capable of mapping up to four extents directly in

the i block record. This record can be seen as a C programming language

union. When mounted without the extent option, it behaves like ext3fs

(explained previously in Figure 3.8). When this option is present, however,

the array is treated as shown in Figure 3.10.
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Figure 3.10.: The Extended 4 Filesystem i block inode record, with and
without the extent mount option.

Two different structures appear in the new i block array. The first is the

ext4fs extent header which is shown in Table 3.3 and describes how the

extents are laid out for that inode. If four or fewer extents are present, then

they are directly addressed by four structures present in bytes 3 to 14. A

magic number is also present, allowing for new features to be added (such

as a tree checksum).

struct ext4_extent_header

{

__le16 eh_magic; /* support different formats */

__le16 eh_entries; /* number of valid entries */

__le16 eh_max; /* capacity of store in entries */

__le16 eh_depth; /* tree depth, if any */

__le32 eh_generation; /* generation of the tree */

};

Table 3.3.: The ext4fs extent header in Linux kernel 2.6.20-3.
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The second structure is the ext4fs extent which is shown in Table 3.4 and

refers to datablocks allocated on the disk. It is the actual implementation

of the illustrated example in Figure 3.9. The structure addresses the first

logical datablock and the number of blocks covered from that point. The

last 48 bits address the physical location of the first datablock.

struct ext4_extent

{

__le32 ee_block; /* first logical block extent covers */

__le16 ee_len; /* number of blocks covered by extent */

__le16 ee_start_hi; /* high 16 bits of physical block */

__le32 ee_start; /* low 32 bits of physical block */

};

Table 3.4.: The ext4fs extent in Linux kernel 2.6.20-3.

When the four extents covered by the ext4fs inode are not sufficient to

address all allocated datablocks, possibly due to external fragmentation, an

extent tree is created. Every level of the tree except the bottom consists of

index nodes, which are described in Table 3.5.

struct ext4_extent_idx {

__le32 ei_block; /* idx covers logical blks from ’block’ */

__le32 ei_leaf; /* pointer to the physical block of the

* next level, however leaf or index */

__le16 ei_leaf_hi; /* high 16 bits of physical block */

__u16 ei_unused;

};

Table 3.5.: The ext4fs extent index in Linux kernel 2.6.20-3.

Since the extent header indicates the tree depth from that point onwards,

it is possible to compute if the next level will be composed by indices or

leaves. Figure 3.11 illustrates a complete example of a tree. The leftmost

structure indicates the i block array in the inode. Next, it is possible to

observe index nodes that include extent indices pointing to leaves. Continu-

ing to the right, the leaf nodes include extents that point to the datablocks

allocated on the disk. We also note that the ext4fs allocation algorithms

will keep the tree balanced whenever new nodes are added or removed.
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Figure 3.11.: The Extended 4 Filesystem extent tree.

Based on this new disk structure that allows larger filesystems and files

while improving performance, ext4fs also tries to improve on other aspects.

In order to minimise file fragmentation, this filesystem implements a concept

called delayed allocation. This is a method for keeping buffers in memory

for as long as possible before committing data back to the disk.

Delayed allocation helps to reduce fragmentation especially on large files

by waiting a period of time before mapping memory buffers to disk. In this

way, when copying a file, for example, there is time for several blocks to

be allocated in memory for the destination inode, providing hints to the

kernel about the amount of space that will be necessary. The allocator is

also capable of deducing that it is handling a large file, and therefore should

reserve more blocks than it normally would.

This is also convenient with the extent mapping scheme. If compared

to the method used in ext3fs, where each block is addressed (in)directly,

extents provide easier means for the allocation of multiple blocks to be done

in a single request. Considering all requests in the Linux kernel go through

a layer known as the Virtual Filesystem (VFS), which is a common interface

that allows different filesystems to be implemented easily, there is no way

for the ext3fs allocator to predict the requests that will follow.
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Regarding smaller files, the allocator uses a different approach than that

proposed in ext3fs, where files are considered similar when they are in the

same directory (apart from the root directory, when they are considered

in the opposite way). Using delayed allocation, ext4fs groups requests for

small allocations from processes based on a per-CPU locality.

Whether this mechanism is efficient in real world situations remains to be

seen. At this moment it is unclear if the small configuration files in /etc/,

for example, that are supposed to be close together in the media for faster

reading during boot time, would indeed be allocated in that fashion if cre-

ated by distinct applications that are installed at different times. Studies,

however, show that executing two concurrent threads, where one creates sev-

eral small files and another creates one large file, will reduce fragmentation

compared to similar benchmarking done with the ext3fs allocators [94].

Despite the efforts made in the new addressing schemes and allocation

strategies, every filesystem may suffer from fragmentation especially under

low space conditions. It was shown that a fragmented filesystem suffers

performance penalties, especially on magnetic media [30]. An important

feature proposed in ext4fs is online defragmentation, that allows for a

mounted, production filesystem to have datablocks moved in order to reduce

noncontiguous allocations [83].

The proposed defragmentation mechanism is usually invoked by user

space processes through ioctl() system calls. For single files, it will at-

tempt to reduce the number of extents by replacing noncontiguous allocated

datablocks with contiguous ones. On the other hand, it may also move en-

tire related files so they are closer together on the disk (using information

such as shared parent directory). Finally, the ioctl() interface may also

be issued for an entire filesystem.

While different strategies are applied depending on the type of the call,

all algorithms are based on the idea of allocating a new temporary inode

and attempting to get the required amount of datablocks as contiguous a

fashion as possible. Upon success, data is transferred to the new datablocks

and the extents are updated accordingly. Figure 3.12 illustrates this idea.

Concluding, ext4fs promises enhancements to ext3fs, allowing the sup-

port for larger installations and files, new techniques to boost performance

and other minor features not listed in this section (such as timestamps

measured in nanoseconds and larger number of subdirectories supported
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Figure 3.12.: The ext4fs online defragmentation strategy.

per directory, to name but a few). However, it was only marked as stable

in late 2008 [63], after the start of this research, still has a limited user base

and continues to receive many fixes in its implementation, subject even to

structural changes. Considering these factors, we have chosen the ext3fs

filesytem for the enhancements proposed in this research.

Nevertheless we have been able to draw inspiration from mechanisms in

ext4fs. For example, in our implementation of the datablock migration

scheme we use ioctl() system calls, adopting a similar principle to the

online defragmentation discussed earlier in this section.

3.6. Other Filesystems

Prior to defining the filesystems we have analysed in this chapter, namely

FAT and the Linux Extended 3 and 4 Filesystems, we have considered and

discarded other technologies. However they were discarded for being too

young, under development or simply inapplicable to the work presented in

this thesis, this section will discuss some of them in brevity.
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3.6.1. Btrfs

Btrfs [1], which stands for B-Tree Filesystem, was originally designed by

Oracle Corporation in 2007. It is a GPL-licensed open source project that

is open to contributions from independent developers. Its principal author,

Chris Mason, states that Btrfs is intended to address issues such as the

lack of pooling, snapshots, checksums and integral multi-device spanning in

Linux filesystems, allowing for this operating system to scale upward into

larger storage configurations common in the enterprise environment [33].

As the name suggests, the filesystem is based on B-Trees [12]. The original

author, however, followed recommendations [79] on how to adapt such a

structure for on-disk storage. This proposed modified data structure is

particularly interesting for enabling Copy-on-Write techniques, and it was

used in such a way that all data types are considered tree nodes.

Finally, Mason believes Btrfs will assist Linux in scaling to storage avail-

able in large enterprises not only by means of addressing large volumes, but

also because Btrfs allows for administration and management via a clean

interface [47]. The filesystem, however, is still under heavy development

and lacks essential features such as production-ready consistency check and

recovery tool.

3.6.2. ZFS

ZFS [98], which stands for Zettabyte Filesystem, was initially developed by

Sun Microsystems. It is both a filesystem and a volume manager in such

a way that it can be installed over multiple disks. This, combined with

features such as data checksumming, allows for interesting features such as

the detection of data corruption on small reads at the volume manager level

(i.e. before the corrupted data is passed to the application).

After Sun’s acquisition by Oracle in 2010, ZFS became part of the Open-

Solaris operating system. It is licensed under the Common Development

and Distribution License (CDDL) and because of that it is only available

to several other operating systems as user space implementations, due to

conflicts with other licenses such as GNU’s GPL. A Linux native release of

ZFS is still in its early stages of development, but it cannot be distributed

with the Linux operating system for the aforementioned licensing reasons.
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4. The Extended 3 iPODS

Filesystem

This chapter describes the main contribution of this thesis: an intelligent

filesystem that uses QoS hints to allocate and maintain data on multi-tier

Virtualised Storage Systems. Named after the project that sponsored this

research1, the Extended 3 iPODS Filesystem (ext3ipods) is an enhance-

ment of the Linux Extended 3 Filesystem (ext3fs). Capable of understand-

ing the distinct QoS attributes delivered by different layers of the storage

infrastructure, it uses QoS hints on datasets to intelligently allocate and

maintain data layouts.

As discussed in Chapter 2, existing QoS optimisation for such storage in-

frastructures mostly concern boosting overall average system performance.

Such solutions are based on access pattern analysis, observing the system

workload including I/O requests frequencies and sizes [93, 29]. Upon in-

ferring the access pattern of particular datasets, such solutions design new

data layout configurations that may enjoy better performance. While some

solutions will go as far as considering the migration cost from one scenario to

another [8, 95], the design process itself has been proven expensive due to the

state explosion of possible configurations [10]. Other centralised storage so-

lutions do not consider automated strategies for such optimisations [71, 72].

Our proposal approaches the problem from a different angle. Based on

the fact that certain aspects of QoS cannot correctly be inferred automat-

ically (e.g. infrequently accessed data that require high performance), we

envision a model where users and applications specify what level of differ-

ent QoS attributes they would like their datasets to receive from a storage

infrastructure. Such specification would happen in a model similar to the

one presented in Table 4.1. The table exemplifies different datasets with

1Intelligent Performance Optimisation of Virtualised Data Storage Systems (iPODS),
EPSRC Grant EP/F010192/1. See Section 1.4.
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different storage QoS requirements, such as Log Archives that must not be

stored on unreliable media, require abundant space and do not require high

performance.

Datasets
QoS Requirements

Performance Reliability Space Efficiency

Temporary Data HIGH LOW MEDIUM
Log Archives LOW HIGH HIGH

RDBMS Datafiles HIGH HIGH HIGH
Config. Files MEDIUM MEDIUM LOW

Table 4.1.: Example of storage QoS requirements for different datasets.

Based on such a specification, an intelligent middleware layer should be

capable of evaluating how these requirements can be best matched given a

set of storage tiers, each of which provides a different level of QoS support.

An ideal place to implement this middleware layer is an operating system’s

filesystem, since it holds metadata on all datasets and has awareness of the

entire logical address range available for data allocation. In order to present

a robust system capable of proving these concepts in a working environment,

some key aspects needed to be considered:

• Compatibility: the new filesystem had to be compatible with existing

technologies for several reasons. Firstly, to show its applicability in a

realistic context. Secondly, to provide a convincing basis for compar-

ison. Finally, to lower barriers to possible adoption. Because ext3fs

is offered as default on most Linux distributions, we have decided to

base our proposal on top of it. This has been done in such a way that

regular ext3fs filesystems can be used as ext3ipods filesystems and

vice versa without any conversion process between them.

• Quality of Service support: another important question is what Qual-

ity of Service (QoS) attributes should be possible to specify, at what

level of detail and how these attributes should relate to actual data

in the filesystem. Furthermore, what should be the means for their

management, which should be realised through familiar interfaces to

system administrators, users and applications.

• Data granularity: an important technical aspect for the realisation of

such a filesystem is the granularity of data which will be considered
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for QoS evaluation. Because QoS attributes qualify as metadata, they

must relate to all disk data to which they apply. Defining the proper

granularity therefore not only affects the overall filesystem perfor-

mance but also causes disk space overhead.

The next sections address these matters while presenting our design for

the ext3ipods filesystem.

4.1. Structure and Compatibility

As noted in [48], maintaining a compatible interface among different filesys-

tems is crucial for operating systems. With ext3ipods, it is necessary to

push that concept further. Not only must it conform to the Virtual Filesys-

tem (VFS) layer, which is a generic interface for filesystems in the Linux

kernel, but it must also be compatible with stock ext2fs and ext3fs. In

order to achieve this, the ext3ipods filesystem must share the exact same

disk structure, not only at a conceptual level (organisation through a super

block, block groups, etc.), but also in every record within such structures.

This allows an ext3ipods filesystem to be remounted at any time as a stock

ext3fs or vice versa, avoiding any conversion process.

Considering that the proposed improvements involving QoS awareness

schemes would be implemented in the filesystem components that run within

the operating system’s kernel (e.g. the data allocation algorithms and the

attribute management interfaces), this would not be an issue. However, the

metadata denoting which addresses of the filesystem provides certain QoS

attributes still require persistence and therefore need to be stored inside the

filesystem. Such persistence also applies to the metadata that specify what

QoS attributes are required by each dataset.

This matter immediately raises the granularity issue regarding how much

metadata must be saved for QoS attributes, since defining how to store them

is strictly related to the volume of data which must be kept. The next two

subsections address this subject.

65



4.1.1. Granularity of Quality of Service Metadata for

Datasets

Regarding what level of granularity should be used to address datasets, the

following options were considered:

• Datablock: this is the smallest reasonable granularity scheme, given

that a datablock is the filesystem’s unit when designating space for

inode data. In ext3fs, its size is defined during formatting time and

may vary from 1 KB to 4 KB (as previously described in Table 3.1).

Implementing QoS attributes at this level could be done by declaring

a structure defining the QoS metadata and instantiating a map of such

structures for each block group. This map could be allocated as the

contents of a special inode (such as a special file in the root of the

filesystem) and allocated in reserved datablocks in each block group.

• inode: setting the granularity at the inode level produces coarser grains,

since a single QoS setting refers to a group of datablocks. Implement-

ing QoS attributes at this level could be done in two different ways.

The first one is to use the inode extended attributes filesystem entry,

which is a native resource to allow more metadata to be attached to

any given inode. The second method is to use spare or reserved space

in the inode structure, given that the QoS metadata is small enough

and fixed in size.

• Block group: setting a block group as the grain size produces even

coarser grains, since a single QoS setting refers to a group of inodes.

Effectively, it refers to every inode allocated in that block group. How-

ever, the datablocks allocated for these inodes could be placed virtu-

ally anywhere in the filesystem. This means that changing the QoS

requirement for a block group would likely result in the migration of

every datablock associated with inodes in that block group.

Using a level of detail such as datablocks could be interesting for appli-

cations such as DBMS datafiles, where some records of a single file might

have a different access profile than others. This would be the case for news

feeds, for example, where older entries are not accessed as often as new ones.

Creating an interface for such QoS specification, however, would break our
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requirement for compatibility. Not only would the applications need to be

modified in order to support this interface, but they would also need to be

aware of the filesystem’s block size, a piece of information that is usually

abstracted at application level. Another issue with this level of granular-

ity would be the severe fragmentation that would be caused when different

datablocks of a single inode were assigned to different tiers within a VSS.

On the other hand, setting the granularity level to a block group would

likewise present problems. Firstly, as would happen with the granularity

set at the datablock level, it would be complicated to define an interface

for users and applications to specify QoS attributes, considering that they

are not aware of the logical addresses of allocated data. Secondly, changing

the QoS attributes for a particular block group would affect every inode

allocated in that block group, therefore reducing the degree of control by

users and applications.

With the granularity level set to an inode, every datablock addressed by

one inode is subjected to the same QoS requirements. While this grants

less control than a single datablock granularity, no new interface has to be

defined as there is already a set of tools which allows for the change of inode

attributes. Another benefit could be reduced external fragmentation, since

the default allocator attempts to place datablocks for an inode in the same

VSS tier.

Regarding the storage for QoS metadata, we have looked into an inode

record to find that the 4 byte attribute used to store an entry’s flags has

15 bits currently not in use. Using the same interface defined for altering

and displaying inode flags, those 15 bits could be arbitrarily defined for QoS

definition without modifying the filesystem structure. When more space is

required for QoS metadata, the inode extended attributes feature can be

used, as will be discussed further in this section.

After analysing the evaluated options, the inode was chosen to represent

the QoS required by datasets. This means that directories or files can

carry metadata defining what QoS attributes are desired for their designated

datablocks. Furthermore, means for controlling this metadata are achieved

by extending existing technologies such as the toolset that is available for

maintaining inode flags.
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4.1.2. Granularity of Quality of Service Metadata for

Infrastructure

Mapping the level of QoS that is delivered by different parts of a multi-tier

storage infrastructure is a complex task due to the variations that can oc-

cur within each tier. As previously discussed in Section 2.2, the usage of

technologies such as RAID combined with multi-zone hard disk drives will

create scenarios where certain logical addresses will support larger through-

put than others within the same tier (in the aforementioned examples, one

range of the logical addresses of a tier was over five times faster than the

other).

When evaluating which granularity should be used to profile the QoS

delivered by the storage infrastructure, the following have been considered:

• Datablock: considering that all access at the filesystem level is done in

units of datablocks, this would be the smallest amount of space to pro-

file in terms of QoS delivered. This means that a set of QoS attributes

must be defined for every datablock in the filesystem, occupied or not,

incurring in a large amount of metadata overhead. Similarly to how

was proposed for the granularity of QoS metadata for datasets in

Section 4.1.1, a way of implementing this could be achieved by the

creation of a special file in the root directory of the filesystem. Its

contents could map the metadata for each addressable datablock.

• Set of datablocks: another idea would be to profile the QoS delivered

by a set of datablocks, instead of doing so for datablocks individually.

This would obviously reduce the amount of space required for meta-

data, as a single QoS attribute description would apply to a larger

fraction of the storage infrastructure. Also, because datablocks shar-

ing similar QoS characteristics are likely to be close together within a

tier, the set could be classified as a range of consecutive datablocks,

facilitating the grouping. Conveniently enough, ext3fs is already ar-

ranged as block groups, which are sets (or ranges) of datablocks as

described in Section 3.4. Considering every block group is already

associated with a block group descriptor, which is mainly metadata

that holds information on the respective block group, this structure

could be used to hold QoS metadata as well.
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• Tier: one way of arranging sets of datablocks would be to group them

according to the boundaries of the infrastructure tiers. Considering

the examples used in this work, a tier would consist of a similar set

of disks, organised in RAID arrays. As shown in Section 2.1, the

main problem with this concept would be the variations within a tier

regarding the QoS delivered. Using an entire tier as the granularity

for QoS specification would cause inaccurate placement of data, given

that all variation of the QoS delivered within that tier would not be

considered.

Analysing the block group descriptor of ext3fs as it is implemented in

Linux kernel 2.6.20-3 (the default kernel for Ubuntu 7.04 distribution, which

was used during this work), we note that 14 bytes of space are not in use.

Two of these bytes are padding space and another twelve are reserved for

future features, as can be seen in Table 4.2.

struct ext3_group_desc

{

__le32 bg_block_bitmap; /* Blocks bitmap block */

__le32 bg_inode_bitmap; /* Inodes bitmap block */

__le32 bg_inode_table; /* Inodes table block */

__le16 bg_free_blocks_count; /* Free blocks count */

__le16 bg_free_inodes_count; /* Free inodes count */

__le16 bg_used_dirs_count; /* Directories count */

__u16 bg_pad; /* Padding space */

__le32 bg_reserved[3]; /* For future features */

};

Table 4.2.: The ext3fs block group descriptor in Linux kernel 2.6.20-3.

Depending on the level of profiling that is desired and the number of QoS

attributes that are expected to be mapped, this space could suffice. If more

metadata is needed, however, this space could be used to address one or

more datablocks that would hold the additional metadata.

While these techniques solve the issue regarding the metadata storage, it

is also important to evaluate if the number of datablocks contained in a block

group is suitable for profiling. The actual size of a block group is defined

by its datablock bitmap, therefore being proportional to the datablock size,

and is defined at formatting time according to Table 4.3.

69



Datablock size
Number of datablocks

Block group size
in a block group

1 024 B 8 192 8 MB
2048 B 16 384 32 MB
4096 B 32 768 128 MB

Table 4.3.: Block group sizes in ext3fs as defined by the datablock size.

The size of a block group can be easily calculated by considering the

datablock bitmap. This is a special data block stored within the block

group metadata that indicates which blocks are in use within that group.

Because every bit of this bitmap corresponds to one datablock within the

block group, its size is calculated as (8× (datablock size)2).

Based on the analysis made in Section 2.3, 8 MB of data (smallest size for

a block group on ext3fs) should be a small enough grain even for a small

filesystem. Considering the single Seagate ST3500630NS 500 GB multi-

zoned disk analysed in Figure 2.7, the smallest zone (at the end of the

disk’s addressable space) is about 15 GB. Therefore even when using 4 KB

datablocks, there will be about 120 grains (15360 MB/128 MB) available

for QoS mapping, which is a decent amount of data to describe a zone.

4.2. Quality of Service Attributes

The previous section presented how metadata for both desired and deliv-

ered QoS attributes could be stored within the filesystem. According to

the proposed methods, Figure 4.1 presents the structure of a stock ext3fs

filesystem, similar to the one already explained in Section 3.4, but indicat-

ing (with shades) the parts that were modified to accommodate the new

metadata.
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Figure 4.1.: The Extended 3 iPODS Filesystem layout.
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The block group descriptors could directly store metadata for the QoS

delivered by the storage infrastructure where it resides. If the metadata is

too large to fit in the reserved space within the descriptor, an alternative

technique could be used where indirect addressing is used and the metadata

is stored in regular datablocks.

The inode table is also modified so that each inode stores metadata for

the QoS required by the datablocks of that file or directory. Again, if the

metadata is too large to fit within the reserved space of the stock inode

structure, the inode extended attributes technique could be used. Such

attributes are a resource already supported by ext3fs.

Having defined how QoS metadata should be stored both for requirement

and delivery, it is now possible to discuss what type of attributes can be

specified and how they can be evaluated. We have initially classified two

different sets of attributes and will discuss them in the following two sub-

sections.

4.2.1. Quantitative Attributes

Some attributes can be defined quantitatively. This means that a partic-

ular score can be assigned to each one of them. Similar to the examples

previously used in Table 4.1 (where the performance requirements were set

either to low, medium or high), numerical scores can be used to quantify the

level of QoS. In order to allow for flexible definitions (i.e. different systems

can adopt metrics of different magnitudes), our framework was defined to

work with numerical scores.

In the examples used in this research, where attributes were set to low,

medium or high, numerical representations could be 0, 50 or 100 respectively.

As a matter of fact, for an environment requiring only three levels of detail,

they could also be 0, 1 and 2. As will be discussed in Section 4.3, we

are only interested in the difference between required and delivered levels

of QoS; therefore the magnitude of the scores is irrelevant as long as it is

consistent throughout the installation.

The usage of values such as 0, 1 and 2 or those of a greater magnitude

such as 0, 50 and 100 depends on the needs of the environment. The latter

would be preferred in storage infrastructure that are composed of tiers de-

livering high variation in QoS levels, in which case more than three values
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are needed. Another situation that justifies the usage of higher magnitudes,

with gaps between them, would be in cases where a more detailed definition

of the QoS levels is expected to be required in the future.

Examples of quantitative attributes are:

• Performance: this defines how fast the I/O to a particular dataset

should be performed. It could be broken down into read or write

performance, or even different sized read or write operations.

• Reliability: this defines how reliable should be the infrastructure where

the dataset will be stored. According to the examples previously dis-

cussed in Section 2.1, RAID1 should be more reliable than RAID5,

for example.

• Space efficiency: this indicates that the dataset requires a large amount

of space. It could be matched to storage media that supports com-

pression, for example, when performance is not an issue.

• Power efficiency: while this could conflict with performance under cer-

tain conditions, it indicates that the datasets should be stored in stor-

age infrastructures such as tape archives or MAID [22]. A MAID

is an array of disks that remain spinned down unless they are being

used, usually also offering some redundancy and used for infrequently

accessed datasets with low performance requirements.

4.2.2. Qualitative Attributes

A different set of attributes cannot be immediately quantified by a score.

It includes the set of attributes that can be better categorised in classes,

indicating mainly if an attribute is required or not. Examples are:

• Enforced deletion: sensitive data need to have their datablocks wiped

off the disk, sometimes more than once to erase magnetic traces, in-

stead of simply having the inode erased. Today, a series of tools [19, 46]

exists to perform recovery or forensic analysis of deleted data on the

most popular filesystems, specially in cases where the datablocks were

left untouched [18].
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• Growth likelihood: such an attribute could help data allocators on

the reservation of consecutive space for inodes in order to prevent

fragmentation. Files in /etc/, for example, are much less likely to

grow than those in /var/log/, therefore requiring low, if any, further

space to be reserved for them.

• Regulatory compliance: some QoS requirements may apply to regula-

tions such as SEC 17a-4 [69], defined by the U.S. Securities and Ex-

change Commission, that dictates the storage media on which records

may be kept for broker-dealers. According to the rule, data must be

preserved in non-rewriteable and non-erasable media such as Write

Once Read Many (WORM) [64] storage devices.

4.2.3. Quantifying Qualitative Attributes

Ideally, the data allocator should be able to compute the difference between

a numerical score for required and delivered QoS. The smaller the difference,

the better the allocation scenario, considering we aim for relative QoS.

To achieve this for binary qualitative attributes, we could use scores in

larger scales than those applied for quantitative counterparts. As an exam-

ple, it is possible to compute the difference for performance QoS attributes

in the order of the hundreds and the difference for security regulations QoS

attributes in the order of the millions.

While such technique would not enforce that all data requiring a par-

ticular storage media would be allocated accordingly every time, it would

make the selected media the preferred location whenever it is available (both

present and with free space). This is in accordance to the relative nature

of QoS matching which we propose and storage administrators should be

aware of when selecting which attributes will be supported in their setup.

4.3. Quality of Service Evaluation

Before we consider how to enhance the inode and datablock allocators to

utilise the QoS metadata, we introduce a means to evaluate a given data

layout with respect to the desired and delivered QoS attributes. The fun-

damental idea is to calculate the difference (∆) between the scores of QoS

delivered (QoSdlv) and desired (QoSdes), as exemplified in Equation 4.1.
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∆ = QoSdlv −QoSdes (4.1)

When the value of ∆ is zero, it indicates a perfect match is in place

between desired and delivered QoS for a particular attribute. This means

that the closer the value is to zero, the better the data layout. When the

calculated value of ∆ is negative, there is underprovisioning taking place,

since the QoS score desired is higher than delivered. A positive value means

the data lies in a storage area that is capable of delivering a higher level of

QoS; therefore overprovisioning is taking place.

In order to evaluate the layout for all the QoS attributes that are in

use in a given system, an aggregate function is needed. Considering a set

of attributes attr, Equation 4.2 presents our initial concept to realise this

aggregation in the form of a sum, adding up every ∆a calculated for each

attribute a. Similarly to Equation 4.1, every ∆a is calculated through the

difference between the scores of QoS delivered (now QoSa

dlv
, as it is specific

to attribute a) and desired (QoSa

des
).

∑

a∈{attr} ∆a, where

∆a = QoSa

dlv
−QoSa

des

(4.2)

In practice, calculating ∆a involves traversing the inode’s i block array

(explained in Section 3.4 and illustrated in Figure 3.8). Because datablocks

for a particular inode can be allocated on any block group in the entire

filesystem, it is necessary to use QoSa

des
for every datablock of the inode un-

der evaluation, while using QoSa

dlv
for the block group where each datablock

resides.

To illustrate this scenario, Figure 4.2 presents two block groups b1 and

b2 that deliver QoS attributes a1 and a2 with different scores. An inode,

allocated in the inode table of block group b1 and requiring these attributes

with scores a1 = 75 and a2 = 60, has three datablocks allocated in b1 and

another three in b2. The score for this example is obtained by summing the

differences of QoSdlv and QoSdes for each datablock, considering the block

group where it resides. Table 4.4 shows how the calculation is done.

The scenario proposed does not contain block groups capable of delivering

exactly the same score required by the inode. Despite that fact and accord-

ing to the steps illustrated in the table, the resulting score for this data
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1−indirect addressing

a2=50

a1=50

a2=70

a1=100

a2=60

a1=75

Block Group b2

datablock area...

Block Group b1

table
datablock areainode ...

...
group
desc

block

group
desc

block

direct addressing

Figure 4.2.: Example, for QoS evaluation, of an inode with datablocks allo-
cated in two different block groups.

∑

(3× (100 − 75))
Three datablocks requiring score 75 for attribute a1, re-
siding in block group b1 that delivers score 100 for the
same attribute.

(3× (50− 75))
Three datablocks requiring score 75 for attribute a1, re-
siding in block group b2 that delivers score 50 for the
same attribute.

(3× (70− 60))
Three datablocks requiring score 60 for attribute a2, re-
siding in block group b1 that delivers score 70 for the
same attribute.

(3× (50− 60))
Three datablocks requiring score 60 for attribute a2, re-
siding in block group b2 that delivers score 50 for the
same attribute.

= 0
The resulting score is zero, although there is both over-
and underprovisioning happening, suggesting that a per-
fect layout is in order.

Table 4.4.: Step-by-step QoS evaluation of an example containing dat-
ablocks scattered over two different block groups.
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layout is zero. This suggests that a perfect layout is in place, with respect

to QoS evaluation, even though data allocated in b1 is overprovisioned and

data allocated in b2 is underprovisioned.

This problem raised the question of evaluating under- and overprovision-

ing cases with a different method. In order to achieve this, the QoS evalua-

tion formula was modified to include a provisioning factor p. Equation 4.3

presents this enhancement.

∑

a∈{attr} ∆a × p, where

∆a = QoSa

dlv
−QoSa

des
, and

p =

{

−|cu| if ∆a < 0

|co| if ∆a ≥ 0

(4.3)

Using the new evaluation formula, the sum will always be composed of

positive numbers, since p will switch the sign of ∆a if it is negative. To

differentiate the provisioning scheme the formula offers cu and co, which are

constant factors applied to indicate how worst it is to under- or overprovi-

sion. For example, if one system considers underprovisioning twice as bad

as overprovisioning, cu and co may be set to 2 and 1 respectively, adding

twice the score every time ∆a is less than zero.

Re-evaluating the previous example with the new formula and the pro-

posed values for cu and co, it is possible to observe how the final score is

affected by data that is not perfectly matched. Along with these new re-

sults, we also present cases where all datablocks are either in block group

b1 or b2. The results are expressed in Table 4.5.

Evaluated
Scenario Description

Score

315
Same scenario as before, having three datablocks allocated in block
group b1 and three datablocks allocated in block group b2.

420
Scenario with most underprovisioning, where all six datablocks have
been allocated to block group b2.

210
Scenario with most overprovisioning, where all six datablocks have
been allocated to block group b1.

Table 4.5.: Data layout evaluation of three different scenarios using the pro-
visioning factor.

Comparing the results of the original evaluation scheme with the new

one that takes provisioning into account, it is possible to observe how the
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scores are more informative. Firstly, none of the results indicate perfect

allocation, considering there are no block groups capable of delivering ex-

actly what is desired. Secondly, the new results show that if some or all

data is underprovisioned, the resulting scores are higher than if all data is

overprovisioned.

Finally, when applying the score evaluation formula to calculate possible

layouts with the intent to allocate data, we considered situations where

ties could happen between different attributes. For example, if a scenario

presents a situation where it is impossible to meet both a performance and

a reliability requirement, possibly because the infrastructure is unable to

deliver high values for both attributes simultaneously, breaking the tie may

be required. In order to achieve this, one last multiplier factor ma is added

to the formula, as shown in Equation 4.4.

∑

a∈{attr} ∆a × p×ma, where

∆a = QoSa

dlv
−QoSa

des
,

p =

{

−|cu| if ∆a < 0

|co| if ∆a ≥ 0
, and

ma = attribute multiplier

(4.4)

The attribute multiplier could also be used to reinforce the importance of

certain qualitative QoS attributes. As previously discussed in Section 4.2.3,

where it was proposed that a different scale of scores is used for such at-

tributes (i.e. scores in the order of thousands or millions instead of hun-

dreds), it is now possible to use ma causing the score to behave accordingly.

4.4. Quality of Service Management Interfaces

As discussed throughout this chapter, there are two types of QoS definitions

that are applied in ext3ipods. One is defined by users or applications over

datasets and the other is defined by a storage administrator when profiling

delivered QoS. In view of that, there are two distinct QoS management

interfaces.
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4.4.1. inode Management Interface

One of the reasons for selecting the inode flags and extended attributes

support for the implementation of our QoS metadata was the existing man-

agement mechanisms. The inode flags are contained within the inode struc-

ture and are managed through ioctl() system calls. Extended attributes

are a list of name:value pairs, managed through a dedicated library called

libattr and stored in dedicated datablocks.

Considering this work focuses on a small set of QoS attributes to prove the

concepts introduced by this thesis, we will work exclusively on the inode flag

support. As discussed in Section 4.1.1, given the amount of QoS metadata is

fixed in size and small enough to fit in reserved space of the inode structure,

there is no need to use additional datablocks.

While the generic kernel interface can be used directly by applications to

retrieve and alter inode flags through the ioctl() system call, libraries and

sets of tools exist to facilitate the task. We point out the libe2p library,

which is developed and maintained along with the e2fsprogs [90] suite of

tools. Besides being present in all major desktop and server Linux distribu-

tions, they allow for easy integration with existing scripts and applications.

The e2fsprogs include two tools named lsattr and chattr for viewing

and setting inode flags respectively. They are used in the same straightfor-

ward manner as chmod is used to manipulate the read, write and execute

flags (as well as other bitsets such as setuid). To maintain elegance and

compatibility, these tools make use of libe2p in order to access the inode’s

flags instead of issuing ioctl() calls directly.

Users managing files and directories through a shell environment can call

lsattr and chattr directly. Similarly, user scripts can call these tools in

the same manner. Applications may manage inode flags with a greater

range of options. Depending on the scenario, they may call scripts or the

e2fsprogs shell tools directly. The preferred method, however, would be to

compile the applications against libe2p for improved performance, elegance

and compatibility. Ultimately, they could issue ioctl() calls directly, al-

though bypassing the library is not recommended considering the overhead

to keep applications up-to-date when changes are made to the attribute

support. Figure 4.3 illustrate this integration process, showing the possible

interactions between the relevant components.
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on−disk filesystem

inode flagset

libe2p
library

kernel

and writes
to disk

ioctl() interface

kernel reads

ioctl() calls

chattr

the library
tools call

lsattr

libe2p issues

scripts
useruser

applications

call tools
scriptsapplications may

call scripts or
tools directly

libe2p for compatibility
or be linked against

ioctl() calls directly
or even issue

Figure 4.3.: Interface integration for inode flags manipulation.
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In order to implement support for our QoS metadata, we have mapped a

fixed set of attributes to use throughout this work. This set is composed of

read performance, write performance and reliability. Firstly, we have mod-

ified libe2p to understand the new flagset which includes these attributes.

Next, we have enhanced lsattr and chattr to properly parse command

line options and to issue library requests accordingly. The kernel imple-

mentation of ioctl() system calls did not have to be modified, considering

we use the stock read and write inode flags options. This reinforces the pref-

erence for application interaction via the library and not with the ioctl()

kernel interface.

4.4.2. Block Group Management Interface

At the other end of the storage infrastructure, system administrators require

an interface to manage the flags in the block group descriptors describing

provided QoS. Because block group descriptors are composed of metadata

that is managed solely by the kernel, there is no straightforward interface

available to users, applications or system administrators capable of manag-

ing their contents.

While there are different means for user space applications to communi-

cate with the kernel, two popular choices are device files (special files located

in the /dev/ directory) or the proc filesystem. Considering the proc filesys-

tem does not need to be mounted at all times, we have created a device file

for system administrators to interact with the block group descriptors.

Device files may be of two different types [73]. The first one is called

a block device and is used for the transfer of data in sets of bytes, usually

sectors, with a typical example being storage media such as hard disk drives.

The second type is called character device and is used when the transfer

of data is realised one byte at a time, with an example being terminals.

Considering our interface must support the communication of varying sized

commands and return buffers, we have used the latter.

On the kernel end, we have developed a loadable module named iPODS

Filesystem Manager (ifm) which interacts with user space requests through

the character device /dev/ifm. Among other features which will be dis-

cussed later, this module is used to manage QoS metadata from block group

descriptors of an ext3ipods mounted filesystem.
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Using this method for managing a mounted filesystem provides additional

benefits. For instance, system administrators may profile the storage infras-

tructure and update QoS metadata on-the-fly without the need to disrupt

the filesystem usage. Additionally, ifm interacts directly with the kernel

cache of the set of block group descriptors, providing improved performance.

profiling
tools

system
administrator

to the character device /dev/ifm

kernel

and writes
to disk

kernel reads

on−disk filesystem

block group
descriptors

iPODS Filesystem Manager (ifm)

/dev/ifm

system admins can retrieve or alter
QoS attributes by writing commands

and reading the return values
or by using automatic profiling tools

Figure 4.4.: Interface for block group descriptors metadata management.

Figure 4.4 illustrates the block group descriptors metadata management

process. It is important to note that system administrators may write and

read directly to the character device, using terminal commands such as

echo and cat or develop automatic mechanisms. For example, automatic

performance profiling tools [15] could update the relevant performance QoS

attributes by holding open a file descriptor on /dev/ifm and reading or

writing the appropriate commands.
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4.5. Allocation Strategies

We now discuss three different allocation strategies that we made use of

while conducting this work. Firstly, we will describe the basics of the default

allocator present in ext3fs. Secondly, we will show how we modify the

inode allocator to intelligently make use of the QoS attributes. Finally, we

go further and present modifications to the datablock allocator so it also

makes use of QoS attributes.

4.5.1. Default ext3fs Allocator

Naturally, the default ext3fs inode and datablock allocators are completely

unaware of any QoS metadata in the filesystem. Not only the QoS metadata

introduced by by ext3ipods uses reserved space that is originally ignored

by ext3fs, their algorithms are exclusively focused on keeping directories

and files that are alike close to each other on the physical media and on

reducing fragmentation.

To achieve this, the inode allocator exploits the concept of block groups.

When finding a place for a new inode, the allocator will attempt to use the

same block group for entries that reside in the same directory. The only

case where that is not true is when creating subdirectories on the filesystem

root, in which case the allocator assume these entries do not have anything

in common and therefore it will do the opposite: that is, spread them into

different block groups that are far apart.

After allocating an inode, data is usually written to the media, with

the corresponding datablocks being associated with the new inode. The

datablock allocator is responsible for finding where to write. Because our

focus is on allocation regarding QoS matching, our experiments will not

include concurrent writing or other fragmentation-inducing experiments.

While searching where to write, the datablock allocator will try to find

new space in the same block group as the inode when dealing with the first

datablock to be allocated for the inode. In cases where previous allocation

has been done, the kernel attempts to allocate contiguous space. When that

fails, it will search for space in the same block group. This mechanism is

particularly relevant to this thesis, as in some cases the use of our intelligent

inode allocator alone already provides benefits in terms of data placement

when considering QoS requirements.
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When there is no space available within the current block group or there

is an imbalance of inode modes in that block group (meaning that a certain

ratio of directories/files is high), the datablock allocator will search for space

elsewhere, giving preference to block groups close to the inode or to the last

datablock allocated. This also concerns our new datablock allocator, that

is enhanced with additional criteria as described below.

This algorithm was initially proposed by Grigoriy Orlov upon noticing

that small filesystems performed better than their larger counterparts [74].

Despite the fact that it has been accepted by the community and used in

ext3fs since November 2002 [89], little benchmarking has actually been

done to prove its benefits [43].

4.5.2. QoS-aware inode Allocator

As discussed in Section 4.5.1, the original ext3fs inode allocator adopt dif-

ferent strategies for directories or files in an attempt to spread data unlikely

to be related across the filesystem. Our goal is slightly different, as we aim

to group data that has the same QoS requirements in the set of block groups

that is capable of delivering those requirements the best. To achieve this, we

completely replaced the default allocation algorithm with a new strategy.

Our strategy uses the QoS match score formula presented in Section 4.3

to scan for block groups capable of providing a score of 0 (which is a perfect

match between what is required by the inode and delivered by the block

group). Naturally, it only consider block groups with free space.

In case there are no block groups capable of perfectly matching the QoS

required by the inode, our allocator will choose the one closest to 0. This

search is currently realised linearly from the first block group of the filesys-

tem towards the last. Algorithm 1 lists this idea in pseudocode.

Lines 1 to 5 of the algorithm declare the variables that are going to be

used. Group idx is the iterator used in the loop during the search and

nGroup is the total number of block groups. BestGroup stores the index

of the best suitable group located and is initialised to −1, indicating that

none was yet found. Score annotates the current score should the inode to

be allocated be placed in a certain block group. It is initialised to 0 and

BestScore, which indicates the best score computed during the search, will

be initialised to the maximum value that the variable type can store.
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Algorithm 1: QoS-aware block group locator for inode allocation.

Group idx = 0;1

nGroup = total number of block groups;2

BestGroup = −1;3

unsigned Score = 0;4

unsigned BestScore = Score − 1;5

while Group idx < nGroup do6

if GroupDsc[Group idx].isFull then7

Group idx++;8

continue;9

endif10

Score = EvalQoS(GroupDsc[Group idx].Delivered, Inode.Required);11

if Score = 0 then12

BestGroup = Group idx;13

BestScore = Score;14

break;15

else16

if Score < BestScore then17

BestScore = Score;18

BestGroup = Group idx;19

endif20

endif21

Group idx++;22

endw23

if BestGroup = −1 then24

return error: no space available;25

endif26

return: Group idx;27
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The value of BestScore depends on the architecture used (32 or 64 bit)

and the magnitude of the QoS levels (as discussed in Section 4.2.1). When

choosing the magnitude of QoS levels that are going to be used in a certain

installation, system administrators should mind their architecture storage

limits to avoid variable overflows during this calculations.

Next, lines 6 to 23 present the loop that browse all block groups from 0 to

nGroup. Firstly, lines 7 to 10 ensures there is free space in that block group,

incrementing the iterator and continuing otherwise. Following that, line 11

issues a EvalQoS() call, which in practice is the application of Equation 4.4

introduced in Section 4.3. The input values are the QoS levels delivered

as described in the block group descriptor GroupDsc and the QoS levels

required by the new inode Inode.

In case a score of 0 is achieved, indicating a perfect location was found

for the inode, the if statement in lines 12 to 16 will update the values of

BestGroup and BestScore, interrupting the algorithm. Otherwise, the else

statement in lines 16 to 21 will keep the values of BestScore and BestGroup

updated with data of the best locations found so far. This is the realisation

of the relative QoS concept, considering our idea is to provide datasets with

the best possible match given their QoS requirements and the infrastructure

availability.

Finally, lines 24 to 26 verify that, if BestGroup still is −1, there are

no space available in the filesystem. This is proven by the fact that, un-

less the continue statement was executed on line 9 during every iteration,

BestGroup must have been altered at least once either in line 13 or in

line 19.

Possible Enhancements

Observing the algorithm, it is possible to notice that caching the results

for EvalQoS() would likely improve the overall performance of the search

procedure. Unless cache querying and updates take longer than calculating

the match (perhaps depending on the number of QoS attributes present on a

particular system), this would prevent the same calculations to be executed

with the same values.

However, there are at least a couple of complications in this optimisa-

tion process. Firstly, the result of the formula is different depending on
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the attributes of each block group and those of the inode. This means that

the cache size would vary dramatically depending on the number of QoS

attributes present in a system and the magnitude of the values used. Sec-

ondly, the attributes both in block groups and inodes may change overtime,

with each of these changes affecting large portions of the cache.

Another attempt to reduce the search process would be to facilitate a 0

match to happen. In order to achieve that, we might think to use a QoS

match score formula with c2 = 0 (i.e. so that we consider overprovisioning

as a perfect match). After experimenting with some scenarios, as will be

shown in Chapter 5, this proves not to be ideal due to the rapid exhaustion

of inode space in block groups capable of offering high QoS parameters.

4.5.3. QoS-aware Datablock Allocator

As already discussed, the original ext3fs datablock allocator attempts to

reduce file fragmentation by keeping datablocks close to each other (trying

to reduce seek time when reading large chunks of data). While we do not

wish to create external fragmentation, our main concern is to keep required

and delivered QoS as closely matched as possible. In light of this, several

ideas were considered.

Initially, we evaluated the possibility of using the inode’s block group as an

allocation goal. This proved complicated due to the backwards compatibility

of ext3ipods. Considering inodes could have been allocated while mounted

with a stock ext3fs kernel, there is no guarantee that its placement was

based on QoS-aware features.

However, this idea could be adopted for the allocation of the first data-

block of an inode, in those cases where QoS attributes were considered in

the placement of the inode, since most applications will immediately write

data after allocating an inode. Unfortunately, the set of functions used by

the datablock allocator does not include resources for passing such infor-

mation, creating implementation complications for this idea. Additionally

the allocator would not be able to distinguish between allocation requests

made immediately after the creation of an inode and those made after an

inode has been truncated to zero bytes, bringing us back to the original

issue of the stock ext3fs kernel. This proposal was therefore dropped due

to implementation-specific complications.
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Another idea that was considered regards using the principle of the stock

ex3fs allocator. That is, when allocating a new datablock, attempt to ob-

tain that datablock which immediately follows the last allocated datablock

for an inode. As discussed, this is originally done with the intent to prevent

external fragmentation. Our intent, however, is to take advantage of the

cases where the last datablock was allocated considering the QoS element.

We therefore considered relaxing that original constraint to allocate the new

datablock on at least the same block group as the last allocated one. How-

ever, similar complications arose as there was no guarantee that the last

allocated datablock was realised based on QoS features.

While we believe that fragmentation is an important issue that must not

be disregarded, even in solid state drives [20], we have limited the focus

of this study to the placement of data regarding QoS matching. In the

future, if experiments showing that concurrent allocation causes external

fragmentation while using our algorithm, considerations must be made to

weight this factor and consider contiguous allocation depending on the QoS

penalties incurred.

Finally, we idealised a QoS priority queue. For every datablock allocation

request, a list of block groups is elaborated and sorted according to how well

the QoS attributes desired by the inode owning the request are met with

respect to the QoS attributes delivered by a particular block group. Once

the priority queue generation is completed, attempts are made to allocate

datablocks from the best possible block group until the last. This strategy

is represented in pseudocode by Algorithm 2.

Lines 1 to 3 of the algorithm declare the variables used. Group idx is the

index used to iterate through block groups. nGroup stores the total number

of block groups in the filesystem. Finally, pQueue represents the priority

queue, which is kept sorted according to the best possible QoS matches

between block groups and inodes.

Following that, the loop indicated from lines 4 to 12 populates the priority

queue. The initial check in lines 5 to 8 will skip block groups that are full.

The EvalQoS() call issued on line 9 is equal to that in Algorithm 1, and

is the evaluation done by Equation 4.4 presented in Section 4.3. Next, the

Score is associated with the group index and inserted in pQueue. The

insertion procedure should guarantee that the list remains sorted according

to the Score. Finally, Group Idx is incremented and the loop continues.
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Algorithm 2: QoS-aware block group locator for inode allocation.

Group idx = 0;1

nGroup = total number of block groups;2

pQueue = empty linked list;3

while Group idx < nGroup do4

if GroupDsc[Group idx].isFull then5

Group idx++;6

continue;7

endif8

Score = EvalQoS(GroupDsc[Group idx].Delivered, Inode.Required);9

pQueue.insert(Group idx, Score);10

Group idx++;11

endw12

while pQueue.hasItems do13

Group idx = pQueue.popItem();14

if allocateBlock(Group idx) = success then15

free pQueue and return: block allocated at Group idx;16

endif17

endw18

free pQueue and return error: no space available;19

With the priority queue completed, the algorithm executes another loop

from lines 13 to 18. This loop will pop indexes from pQueue (line 14)

and issue an attempt to allocate a datablock from the refereed block group

(lines 15 to 17), returning upon success. Here, we assume that an allocation

failure will throw an exception and end the execution. If line 19 is reached,

no allocation has succeeded, and the algorithm returns with an error. Before

executing any of the return statements, it is important to guarantee that

the priority queue was properly deallocated to prevent memory leaks.

Possible Enhancements

Similarly to what has been proposed for the QoS-aware inode allocator, a

cache containing the results for EvalQoS() could be created. This would

prevent the function from being executed repeatedly when allocating dat-

ablocks for the same inode or for inodes with the same QoS requirements.

Naturally, similar complications will occur, mainly relating to the overhead

of maintaining a consistent cache considering factors such as QoS attribute

changes overtime.

88



The next possible optimisation would be to cache the priority queue con-

taining which block groups provide a good fit for newly allocated datablocks.

Again, a trade-off would have to be evaluated in terms of the benefits for

speed of allocation against the costs for maintaining such cache. The re-

sults of this allocation are likely to depend heavily on system-specific data

layouts and QoS configurations.

Because the QoS evaluation of how well datablocks fit into block groups is

similar to the one used for inodes, similar problems are likely to be encoun-

tered. Furthermore, the datablock allocation is broken down into separate

functions within the Linux kernel implementation. Firstly, a block group

is selected and only then a proper allocation attempt is made. This sec-

ond step could fail, for example, due to exhaustion of space during race

conditions.

Finally, depending on the tier size for certain infrastructures, it is likely

that several block groups will deliver QoS attributes at the same level. This

facilitates for the implementation of an extension based system, where a map

could provide the QoS attribute levels for a range of block groups, similar to

the addressing scheme of ext4fs. While the implementation considerations

of such mapping needs further study, it would provide benefits for both

algorithms due to a reduction in the number of iterations for the loop that

locate candidate block groups.

To keep the focus of this work within the proof of the benefits of QoS-

aware allocation, we leave algorithm enhancements for future work.

4.5.4. Concurrent Execution

Previously in this section, we have explained that concurrent experiments

for the purposes of inducing internal file and directory fragmentation would

not be conducted. This decision was made due to the nature of this research,

which leaves such studies for future work.

Concurrent execution of the newly proposed algorithms, however, would

be handled in the same way the the default ext3fs allocators are handled.

Due to the reentrant and preemptive nature of the Linux kernel, the inode

and datablock allocators are designed to be thread safe. That is, multiple

threads executing the algorithm, even if running concurrently on multiple

CPUs, will not affect each other.
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Furthermore, the proposed algorithms are, in practice, helper functions

that return a datablock or an inode for allocation. The kernel resource that

actually allocates these targets is developed in such a way to handle the

case where the indicated target is no longer available. This caters for the

case where a datablock or an inode is selected for allocation by two or more

concurrent executions of the algorithm.

4.6. Migration Strategies

4.6.1. Motivation

However efficient the algorithms presented in Sections 4.5.2 and 4.5.3, there

are scenarios where data layouts may reflect poor allocation QoS-wise. This

could occur for a number of reasons:

• Pre-existing filesystem: due to the compatibility features of ext3ipods,

it is possible that data has been allocated using stock ext3fs alloca-

tors. Considering these allocators lack with regards to QoS elements,

the QoS evaluation of the data layout would inevitably show poor

allocation.

• Data life cycle: considering it is possible to modify inode or block

group attributes after they were initially set, there might be cases

where data was properly allocated, but its attributes have changed

and the new QoS evaluation shows poor allocation. Studies showing

data evolution in large-scale filesystems were presented in [31].

• Misallocation of data: besides pre-existing filesystem, other factors may

cause data to be misallocated according to QoS requirements. This

is likely to happen in filesystems working close to full capacity, when

block groups capable of providing appropriate space for certain QoS

requirements have no space available.

• Changes to the storage infrastructure: given that new tiers can be dy-

namically added to existing filesystems, it is possible that new QoS

configurations are defined on block groups. This means that existing

QoS requirements can be matched better to a different storage area

according to our evaluation mechanisms.
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Regardless of the cause for data not being located at the most suitable

storage area according to our QoS evaluation mechanisms, data migration

provides means to improve that scenario. It has already being shown that

data migration, under the appropriate conditions, is capable of providing

benefits and cost improvements [36, 84]. The next subsection discusses how

to decide the right moment to evaluate such conditions.

4.6.2. Triggers

While migration is an interesting resource to improve data layout in a filesys-

tem, it may not be obvious to realise when it becomes necessary. We have

identified possible triggering mechanisms to initiate the reevaluation of an

inode, a set of inodes or the entire filesystem as follows:

• Active migration: initiated by an external factor, such as system ad-

ministrator requests or QoS attribute changes to existing inodes or

block groups, this is the process of actively migrating data on a mounted

filesystem. It could be issued for a particular set of inodes or for an

entire filesystem, causing the kernel to evaluate whether the specified

datablocks could have a better QoS score if placed elsewhere.

• Passive migration: initiated by the kernel, either on a regular basis or

during periods of low I/O activity in the system, this is the process of

attempting to improve the data layout regarding QoS evaluation on a

mounted filesystem. Passive migration could also be triggered when

datablocks are read, modified and flushed back to disk from the cache,

in which case the kernel would evaluate the possibility of writing it

back to a different location.

• Offline migration: similar to ext4fs offline defragmentation discussed

in Section 3.5, this process would be initiated by a system adminis-

trator on a filesystem that is not mounted. Like the other scenarios,

it could also be executed to a set of inodes (including a single one) or

the entire filesystem.

It is important to notice that the migration of inodes should be avoided.

Considering the nature of inode tables in ext3fs, it is possible for several

directory entries to point to a single inode (a technique known as hard
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linking). Furthermore, the inode index is obtained through its position in

the inode table of a particular block group, meaning that migrating an inode

for a different block group would cause its index to change. Because there

is no straightforward manner to obtain pathnames from inode indexes [40],

traversing the entire directory tree of a filesystem to update such indexes

would not be feasible.

4.6.3. Migration Strategies

Algorithms for the evaluation of data layout and the proposal of migration

plans have been elaborated in the literature, but exclusively considering the

access patterns and frequencies relating to the performance characteristics

of a storage system [95, 8, 29, 93]. Other studies involving mapping of

migration plans, optimisation and cost evaluation of object placements in

networks have been conducted in [6, 39].

Despite these studies having promising results, a proposal that relates

better to what we are trying to achieve has been done in the ext4fs online

defragmentation previously discussed in Section 3.5. That process strives

to reduce datablock fragmentation by allocating new contiguous areas and

copying data into them. In our model, we can use the same principle to

move datablocks with low QoS scores.

Detecting if a QoS score is low, however, is more complicated than ob-

serving if a file is fragmented. This is because it is not possible to directly

infer if a better score could be achieved in a different allocation scenario. To

obtain that information, it is necessary to evaluate the desired QoS against

the delivered QoS for every block group in the filesystem. This process in-

volves traversing the directory tree of a filesystem and evaluating the QoS

score for every inode.

Furthermore, every inode could contain datablocks allocated in different

block groups. This means that, for every inode candidate to migration, it is

necessary to test if it is possible to improve the allocation of its datablocks

on an individual basis. Considering these elements, we present Algorithm 3.

Lines 1 and 2 declare the variables used in this algorithm. DBlock idx is

the loop iterator index for the datablocks and nDBlock indicates the total

number of datablocks allocated to the inode. Next, lines 3 to 18 list the

main loop that iterates through all candidate datablocks.
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Algorithm 3: QoS-aware migration algorithm.

DBlock idx = 0;1

nDBlock = total number of datablocks in inode;2

while DBlock idx < nDBlock do3

cGroup = getGroupDsc(DBlock idx / total blocks per group);4

cScore = EvalQoS(cGroup.Delivered, Inode.Required);5

if cScore > 0 then6

tDBlock = Allocate DBlock(Inode);7

tGroup = getGroupDsc(tDBlock.idx / total blocks per group);8

tScore = EvalQoS(tGroup.Delivered, Inode.Required);9

if cScore > tScore then10

oDBlock = getBlock(DBlock idx);11

copy contents of oDBlock to tDBlock;12

update inode to point to tDBlock.idx instead of DBlock idx;13

free oDBlock;14

else15

free tDBlock;16

endif17

endif18

DBlock idx++;19

endw20

return;21
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The loop consists of obtaining the current allocation QoS score for a

datablock and, if that score is not 0, attempting to allocate a new datablock

with a better score. If this succeeds, the contents of the current datablock

are migrated to the newly allocated one and the pointers are updated in the

inode.

Line 4 obtains the block group descriptor for the datablock at hand

through an integer division of the block index by the number of blocks

per group (which is filesystem constant). Line 5 computes its allocation

QoS score using that information. Next, the if statement from lines 6 to

18 limits actions only when the score is greater than 0, given that it would

otherwise not be possible to improve the allocation scenario.

The Allocate DBlock() call in line 7 executes Algorithm 2 without bind-

ing the newly allocated datablock to the inode. Assuming that the alloca-

tion was successful, line 8 obtains the block group descriptor of this new

datablock and line 9 evaluates its QoS score.

The if statement in lines 10 to 17 performs the migration process and is

executed only if the newly calculated score is improved when compared to

the original one for that datablock. If the score has not improved, the new

datablock is released and the algorithm loops back to line 3 after increment-

ing DBlock idx in line 19.

The migration process described in lines 11 to 14 consists of four steps.

Firstly, a handler for the old datablock oDBlock is obtained based on

DBlock idx. Secondly, the contents of the old datablock are copied to

the new one. Thirdly, the inode pointers for that datablock are updated. It

is important to note that due to the addressing scheme in the ext3ipods

filesystem, this could mean updating the i block array in the inode struc-

ture or update pointers in other datablocks in case of indirect addressing.

Finally the old datablock is released, meaning its index is freed in the orig-

inal block group descriptor.

Possible Enhancements

Originally, we believed that it was not necessary to attempt the migration

process for every datablock of an inode. Once it was not possible to improve

the allocation of a datablock, it appeared impossible to improve the score

of subsequent datablocks. Further analysis proved this was not the case.
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Considering inodes have datablocks allocated at different times, the filesys-

tem situation can have changed in terms of free space and QoS levels, in-

dependent of the time frame. This could cause previous allocations to have

happened with different scores than newer ones. Apart from that, inodes

could also have had QoS attributes changes overtime and further datablocks

allocated to them prior to a migration trigger. Based on these reasons, we

believe it is necessary to attempt the migration process for every datablock

associated with an inode.

We note that, based on the enhancement ideas proposed for the allocation

algorithms in Sections 4.5.2 and 4.5.3, access to the EvalQoS() function

both in lines 5 and 9 could be cached.

95



5. Experimental Results

This chapter presents several sets of experiments conducted with ext3ipods.

Firstly, we discuss the hardware and software configurations of the environ-

ment in which our tests were executed. Secondly, we present the suite of

tools that was developed to perform QoS evaluations of data layouts as well

as visualisations. Thirdly, we show how QoS extensions were adapted to

the benchmarking framework Impressions [3]. Finally, we evaluate several

filesystems populated by Impressions to show the benefits of our solution.

5.1. Test Environment

Our first step towards assembling a practical experimental environment was

to analyse the hardware at our disposal. The storage infrastructure used

was an Infortrend EonStor A16F-G2430 enclosure connected via a dual fibre

channel interface to a Ubuntu 7.04 (kernel 2.6.20.3) Linux server with two

dual-core AMD Opteron processors and 4 GB RAM.

To facilitate the experiments, we considered using the same tiers previ-

ously evaluated in Section 2.3; that is, a 1.5 TB RAID5, a 1 TB RAID10 and

a 2 TB RAID0. These tiers were concatenated as described in Section 3.1

using Linux’s LVM version 2.02.06, forming a single logical volume. Such

configuration provides interesting combinations of QoS attributes with vary-

ing attributes of read and write performance as well as reliability. However,

while formatting the 4.5 TB filesystem we noticed that running experiments

on such a large filesystem could be very time consuming.

We then analysed the measurements for each RAID level. Figure 5.1

illustrates the throughput of sequential reads of varying size across the LVM

concatenated filesystem. Figure 5.2 does the same for write operations.

Observing the best and worst possible buffer sizes (i.e. those that maximise

or minimise the throughput), we calculated the time consumed in reading

from or writing to the entire filesystem. Table 5.1 illustrates the results.
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Figure 5.1.: Throughput of sequential reads of varying size across the LVM
concatenated filesystem.

Tier
Best Worst Best Worst

Read Time Read Time Write Time Write Time

RAID5 7 096 s 8 192 s 8 022 s 36 747 s
RAID10 6 610 s 8 119 s 7 861 s 18 968 s
RAID0 6 518 s 7 908 s 8 668 s 29 259 s

Total 5h 37m 4s 6h 43m 39s 6h 49m 11s 23h 36m 14s

Table 5.1.: Times to read from and write to the proposed tiers’ addressable
space using varying buffer sizes (best and worst for each tier).
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Figure 5.2.: Throughput of sequential writes of varying size across the LVM
concatenated filesystem.

After running initial tests, we observed that the time it would take to

run some of our experiments was in the order of weeks due to the number

of files and directories and the varying buffer sizes. This happens because

small write requests cost more than large ones due to latency. In order to

work with a more realistic time frame, we therefore created a smaller, more

manageable filesystem.

Given that the infrastructure QoS attributes used by our algorithms are

obtained through the settings specified in the block groups, we could repli-

cate the original tiers into smaller storage areas without affecting how our

algorithms would perceive them. Table 5.2 reflects the proportions of the

original infrastructure against our new proposed test environment.

Following this idea, we observed the throughput for each of the listed

RAID levels in order to bring forward the appropriate performance QoS

attributes. The first step to conduct this analysis was to average the mea-

surements previously illustrated in Figures 5.1 and 5.2. For each operation

(read and write), we plotted the throughput average at different positions

in the filesystem. Next, we calculated a linear average for each tier.
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Original New Test
Infrastructure Environment

RAID5 1.5 TB 1.5 GB
RAID10 1 TB 1 GB
RAID0 2 TB 2 GB

Total 4.5 TB 4.5 GB

Table 5.2.: Comparison between the capacities of the original storage infras-
tructure and the test environment.

Figures 5.3 and 5.4 illustrate these values for read and write operations

respectively. Based on the linear average, we could classify them as low,

medium or high based on the relationship of the performance levels.
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Figure 5.3.: Analysis of average throughput for sequential reads across the
LVM concatenated filesystem.

Regarding both the read and write performances we can safely infer that,

on average, RAID0 will perform better than RAID5 that, in turn, performs

better than RAID01. Similarly, we defined reliability attributes according

to the studies presented in Section 2.1; that is, the number of drives that

are required to fail in order to occur data loss. While this relative level
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Figure 5.4.: Analysis of average throughput for sequential writes across the
LVM concatenated filesystem.

of detail suffices for our experiments, each tier could be broken down into

smaller areas (up to the size of a block group) for QoS delivery definitions.

Table 5.3 shows the final mapping.

Read Performance Write Performance Reliability

RAID5 Medium Medium Medium
RAID10 Low Low High
RAID0 High High Low

Table 5.3.: Mapping of relative QoS levels to each storage tier.

Unless noted otherwise, the experiments in this chapter were performed

on a 4.5 GB filesystem with 4096 bytes datablocks. This configuration

provides block groups of 128 MB, thus allowing for a total of 36 block

groups. According to the size of each tier in the original infrastructure, we

managed to distribute the respective proportion of space efficiency for each

RAID group and assign the block group layout accordingly. The resulting

distribution is indicated in Table 5.4.
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Capacity
Number of 128 MB

Block Groups

RAID5 1.5 GB 12
RAID10 1.0 GB 8
RAID0 2.0 GB 16

Total 4.5 GB 36

Table 5.4.: Test filesystem block group division.

After assigning the corresponding QoS attributes to each block group,

we proceed to present our data layout visualisation mechanisms. These

tools use the same evaluation techniques as the allocation and migration

algorithms, but have added capabilities to allow for the visualisation of the

layout improvements provided by the QoS enhancements.

5.2. Data Layout Visualisation Mechanisms

To assess the benefits of using ext3ipods, we have developed a suite of

tools capable of providing system administrators with insightful information

regarding how data is laid out on the filesystem. These tools are based on

the same evaluation scheme introduced in Section 4.3 in order to determine

how well does a datablock fit in its current location.

5.2.1. Block Group QoS Evaluation

The first evaluation mechanism that was implemented enables the presen-

tation of a numerical score for a given block group. This value allows an

instant perception on the QoS-wise allocation quality of the filesystem, but

without providing detailed information on each particular QoS attribute.

However it is displayed for each block group, the evaluation process must

be ran for the entire filesystem due to the addressing scheme of datablocks.

As discussed in Section 3.4 and illustrated further in Figure 4.2, a dat-

ablock placed virtually anywhere in the filesystem may be assigned to an

inode located in a different block group. Considering the QoS attributes

desired by a datablock lies with the inode, it is necessary to scan the en-

tire filesystem in order to properly calculate the allocation score for a block

group. Algorithm 4 presents this idea in pseudocode.
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Algorithm 4: Evaluation of block group QoS allocation scores.

BGScore[number of block groups] = array initialised with zeros;1

foreach inode in filesystem do2

foreach datablock associated with inode do3

dbBG = block group where datablock resides;4

bScore = EvalQoS(GroupDsc[dbBG].Delivered,5

Inode.Required);
BGScore[dbBG] + = bScore;6

endfch7

endfch8

return BGScore[];9

Line 1 of the algorithm initialises with zero the BGScore[] array. Each

element of this array will represent the QoS evaluated score for the cor-

responding block group. Next, lines 2 to 8 represent a loop that iterates

through all the allocated inodes for the filesystem. It is not necessary to

parse other filesystem metadata, as inodes exclusively holds QoS require-

ment attributes. Finally, for every datablock associated to each inode, lines

3 to 7 represent the loop that calculates the block group where the dat-

ablock resides (line 4), evaluates the QoS score for the datablock (line 5)

and accumulates the resulting value to the BGScore[] array (line 6).

The resulting array, returned in line 9, will contain the allocation score

for each block group. This is, in practice, a sum of the scores for every

datablock allocated in that block group. In the same way as the evaluation

works for an inode, the smaller the score for a particular block group the

better the allocation scenario.

This metric was implemented within the ifm kernel module and its fea-

tures are accessible via the /dev/ifm character device. It offers insightful

information to system administrators, providing a general idea of the QoS

allocation quality in different parts of an ext3ipods filesystem. It can be

used, for example, to quantify if a particular tier of the storage infrastructure

is not meeting the expected QoS standards. However, a different mechanism

is necessary to evaluate data layouts on an individual QoS attribute basis.
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5.2.2. QoS Allocation Bitmaps

The next visualisation mechanism we developed allows for the individual

evaluation of each QoS attribute. It consists of a bitmap image for each

attribute, where each pixel in the image represents a datablock and its colour

is defined by the allocation score. This allows for an immediate perception

of the allocation quality on an attribute basis for each block group.

To generate this image, we first use the ifm kernel module to retrieve an

inode allocation map. This consists of a listing containing the inode num-

ber with the corresponding QoS requirements and the allocated datablocks

associated to it. Combining this list with the set of QoS attributes delivered

by each block group, we are able to infer the evaluation score for a particular

allocated position in the filesystem and represent it in the shade of a colour.

Considering the system used in this work allows for three QoS attribute

levels (low, medium or high), five possible provisioning situations may arise.

These situations are listed in Table 5.5, along with the colour shade we used

for each one of them.

Provisioning Desired Delivered Colour
Scenario QoS Level QoS Level Shade

Unused Space N/A N/A Grey

Very
High Low Red

Underprovisioned

Underprovisioned
High Medium

Yellow
Medium Low

Perfect Match
Low Low

GreenMedium Medium
High High

Overprovisioned
Low Medium Light

Medium High Blue

Very
Low High

Dark
Overprovisioned Blue

Table 5.5.: Possible provisioning scenarios.

Due to different block groups delivering different levels of each QoS at-

tribute in a system, we included a column to the left of the bitmap image

indicating the QoS level delivered. Considering we are working with low,

medium and high levels, we used the colour shades red, yellow and green

respectively to represent the QoS attribute level delivered by a block group.

This allows for an easier comprehension of the bitmap.

103



(high required)

delivers high reliability

indicates block group
delivers medium reliability

B
G
 
1

B
G
 
2

perfect match
(high required)

overprovisioned
(medium required)

underprovisioned overprovisioned
(low required)

indicates block group

Figure 5.5.: Reliability evaluation example containing two block groups.

Figure 5.5 illustrates an example by showing the allocation bitmap for the

reliability QoS attribute in a two block group set. There, BG 1’s leftmost

column is green, indicating that the block group delivers high reliability.

Similarly it is possible to see that BG 2 delivers medium reliability.

Four datablocks appear allocated in this map. Block group BG 1 has

one datablock perfectly allocated (green). It is possible to infer that this

datablock requires high reliability because this is the QoS level delivered by

the block group, thus the only possible combination is a perfect match as

indicated in Table 5.5. In the same sense, the light blue datablock must

require medium reliability and is therefore overprovisioned.

Regarding block group BG 2, we observe one datablock that also evalu-

ates to light blue. In this case, different from the overprovisioning in BG 1,

the datablock must require low reliability. The yellow datablock is under-

provisioned and therefore requires high reliability. We stress that this is

the same requirement as the green datablock in BG 1, but appears here in

yellow due to the different QoS levels delivered by the block groups.

In practice, we developed a bitmap image generation software that re-

ceives as input an inode allocation map and the QoS levels delivered by

each block group. In the output, each image represents a particular QoS

attribute and each pixel in that image (apart from block group division lines

and the left column) represents a datablock, with its colour meaning how

well it matches that particular attribute’s QoS level.
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We find that these bitmap allocation images can provide great insight

at an individual QoS attribute basis when evaluating a filesystem state.

However, to numerically assess the provision factors between desired and

delivered QoS, we use an additional mechanism.

5.2.3. Numeric Provisioning Evaluation

The last evaluation mechanism we provide is used to numerically quantify

the QoS matching across an entire filesystem. Basically, it computes the

percentage of data that ends up in each category of provisioning for each

QoS attribute. This is perhaps the most useful tool when comparing the

effectiveness of different allocators.

In order to achieve this, we create a set of counters for each QoS attribute.

Each counter in the set represents the provisioning scenarios for its attribute;

that is, very underprovisioned, underprovisioned, perfectly matched, over-

provisioned and very overprovisioned. The idea consists in parsing the same

inode allocation list used in the previous evaluation mechanisms. For every

datablock read, evaluate the QoS score between the delivered attributes of

the block group in which it resides and the desired attributes of the ow-

ing inode. Finally, use the computed score to increment the corresponding

counters.

After parsing the list, each counter indicates the number of datablocks al-

located in that category. Normalising the counters produces the percentage

of data in each provisioning category. As will be shown in Section 5.4, this

proves an effective way to visualise the benefits of the proposed QoS-aware

allocators.

5.3. A QoS-enabled Benchmarking Tool

In order to populate our test filesystem, we required a benchmarking envi-

ronment capable of generating realistic content. We found that many studies

with similar needs [60, 61, 75, 2, 38] used Impressions [3], which is a bench-

marking framework capable of generating statistically accurate filesystem

images using stochastic distributions. It is then possible to use the same

parameters under different environments to recreate particular experiments

under the same conditions every time.
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Impressions gained attention in the filesystem performance community

due to the important goals it aimed at. For once, the work valued the

layout of directories and files, including depth of directory trees and vari-

ety of file extensions. It showed how these elements played a role on the

benchmarking of different applications. As one example, Linux’s “find” is

heavily affected by a fragmented filesystem or one with deep directory trees.

Another example is indexing operations, which is dependent on file types.

To control the variation of these parameters, Impressions offers flexible

configuration files that ranges from an automated mode (where a user is

only required to provide a size for the filesystem image to populate) to

a user-specified mode, where everything can be fine tuned. A list of the

parameters that can be configured, alongside their default values, can be

found in Table 5.6. Further information on the defaults can be found in [3].

Parameter Default Model and Parameters

Directory count with depth Generative model
Directory size (number of subdirs) Generative model
File size by count Lognormal-body

(α1=0.99994, µ=9.48, σ=2.46)
Pareto-tail (k=0.91, χm=512 MB)

File size by containing bytes Mixture-of-lognormals
(α1=0.76, µ1=14.83, σ1=2.35
α2=0.24, µ2=20.93, σ2=1.48

Extension popularity Percentile values
File count with depth Poisson (λ=6.49)
Bytes with depth Mean file size values
Directory size (files) Inverse-polynomial

(degree=2, offset=2.36)
Degree of Fragmentation Layout score (1.0) or

pre-specified workload

Table 5.6.: Impressions configurable parameters with default models.

However ideal as a benchmarking tool for the purposes of this work, Im-

pressions, as released in its website at the time of writing, does not yet

support our QoS attribute standards. We therefore studied and enhanced

its source code to add QoS extensions for its filesystem populating code.

Following predefined configurations, parameters and stochastic distribu-

tions, Impressions will randomly create a set of directories and files in order

to populate a filesystem. To include QoS extensions, we have modified its

directory creation routine to set a particular set of desired QoS attributes

immediately after creating a new directory.
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There is a reason why QoS attributes are not also set on the creation

of files. This is due to the attribute inheritance feature of ext3ipods. By

default, ext3ipods will set QoS attributes on each newly allocated inode

according to the attributes set on its parent directory. Considering this

feature, setting desired QoS attributes on new directories alone not only

suffices to guarantee that QoS attributes will also be added to files, but

actually reinforces the concept that files in the same directory share similar

characteristics.

While this feature is essential, considering data is usually directly written

to inodes immediately after their allocation1, there is a case where it may

cause a problem. When subdirectories are created, they will inherit their

parent’s QoS attributes and immediately allocate a datablock to store its en-

tries. If this subdirectory QoS attributes are then modified in order to meet

its own files’ requirements, its datablocks (i.e. the datablocks containing the

directory entries) will probably find themselves misallocated.

(QoS Attribute Set 2)

parent_directory/

(QoS Attribute Set 1) file1

file2

(QoS Attribute Set 1)

(QoS Attribute Set 1)

subdirectory/

file3
(QoS Attribute Set 1)

(QoS Attribute Set 2) file4

file5

(QoS Attribute Set 2)

Figure 5.6.: Example of directory tree with associated sets of QoS attributes.

Figure 5.6 illustrates this scenario with a directory tree example. Assum-

ing parent directory/ is created with a QoS attribute Set 1, every inode

allocation made inside it will inherit the same QoS attribute set. This in-

cludes files 1 to 3 and subdirectory/, all which will be allocated in order

1Most applications will create an inode and immediately start writing data to it (e.g.
Unix’s /bin/cp). One way to set QoS attributes prior to writing data, thus allowing
a QoS-enabled datablock allocator to perform properly, would be to modify existing
applications to set QoS flags after creating a new inode, but before writing to it.
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to meet Set 1. If files 4 and 5 are supposed to be allocated with QoS at-

tribute Set 2, the attribute set of subdirectory/ must first be changed

accordingly. This, however, is likely to cause the subdirectory’s datablocks

to be misallocated until a migration is performed.

In order to prevent Impressions from migrating every new subdirectory

created that does not have the same QoS requirements of its parent, we

have adjusted the QoS attribute setting strategy. Firstly, we modify the

parent’s attribute set to match the set of the subdirectory to be created.

Next, we create the subdirectory (causing it to be allocated with the correct

attribute set) and only then restore the parent’s original attribute set.

It is important to understand that this approach may present race con-

ditions in scenarios with concurrent allocations. However, the present work

is limited to studying the benefits of QoS-aware data placement and thus a

locking scheme to resolve these race conditions lies outside the scope of our

present work.

Regarding which QoS attribute levels to use, two possibilities were con-

sidered. The first involves using a set containing all possible combinations

of low, medium and high levels of reliability and read and write performance.

The second consists of using only the combination of attribute levels that

are supported in the infrastructure, as defined in Table 5.3. Both cases will

be considered in Section 5.4.

Finally, we evaluated how to select which QoS attribute combination to

set on a newly created directory. Again, two possibilities were considered.

The first involved selecting attributes using a robust random number gen-

erator such as the Mersenne Twister [68]. The second possibility consisted

in simply choosing QoS sets on a rotating basis, looping back to the first

combination used once all of them have been applied. Due to Impressions

already using parameterised distributions to determine when to create di-

rectory or files, we found that the latter alternative was sufficient for our

purposes.

5.4. Scenarios and Results

Having defined a test environment, data layout evaluation strategies and

a benchmarking framework to populate filesystems, this section presents

experiments and results with different scenarios. We start by populating
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our test filesystem with the default ext3fs allocators to collect metrics and

establish a baseline for comparison. Next, we repeat the experiments using

variations of our QoS-enhanced algorithms. Finally, we compare the results.

5.4.1. Baseline Establishment

To establish a baseline for comparison, we defined Impressions to populate

about 4.0 GB (around 90%) of the test filesystem using its default settings

and the ext3fs allocators. These numbers provide enough data to stress the

filesystem occupancy in a meaningful manner. Given the stochastic nature

of the distributions used (which are based on random numbers) and issues

such as internal fragmentation, we observed that about 96% of the filesystem

was populated in practice. Considering we will use the same parameters for

the next experiments, the same write operations, in the exact same order,

will be executed. While the disk occupancy will be the same, the data

layout should be different due to the allocators used.

The initial evaluation, which shows the score for each block group, pro-

duced the values listed in Table 5.7. However, these values alone cannot be

used to infer how good or bad the allocation is. To assess if the layout has

improved or deteriorated QoS-wise in a real world situation, they must be

compared to the same filesystem, with the same allocators, of a different

moment in time. Alternatively, as is the case with our test environment,

they can be compared to the exact same benchmarking procedure, but us-

ing a different allocation algorithm. As an observation on the results, it

is likely that block group 18 scored 0 because no data has been allocated

to it. A more thorough investigation of the allocation map confirmed this

assessment to be correct.

Figures 5.7, 5.8 and 5.9 display the allocation bitmaps for the reliability,

read and write performance respectively. It is possible to confirm that block

group 18 was indeed unpopulated (visible through the grey area in the maps)

due to the characteristics of the stock allocator, justifying the score of 0

observed earlier in Table 5.7. These bitmaps reflect the QoS unawareness

of the ext3fs default allocator by showing a large number of misallocated

datablocks. However, in the same way as the first results obtained, these

bitmaps can be better analysed when compared to the same scenario of a

different time or to the same procedure when using different allocators.
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Tier Block Group Index Block Group Score Accumulated Tier Score

RAID5

1 99 438

891 969

2 87 070
3 89 870
4 106 068
5 75 599
6 88 833
7 73 700
8 127 846
9 84 354
10 5 327
11 18 701
12 35 163

RAID10

13 135 010

876 465

14 172 917
15 171 160
16 137 153
17 151 980
18 0
19 27 660
20 80 585

RAID0

21 5 260

1 740 244

22 119 296
23 81 008
24 131 056
25 93 288
26 129 936
27 83 876
28 127 840
29 128 980
30 121 096
31 119 236
32 128 968
33 129 040
34 129 008
35 115 100
36 97 256

Table 5.7.: Block group evaluation scores whilst using default allocators.
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Figure 5.7.: Default ext3fs allocator bitmap for the reliability QoS
attribute.
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Figure 5.8.: Default ext3fs allocator bitmap for the read performance QoS
attribute.
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Figure 5.9.: Default ext3fs allocator bitmap for the write performance QoS
attribute.
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Finally, we quantify the allocation scenario numerically using our third

evaluation mechanism. Table 5.8 lists the number of datablocks encountered

under each provisioning category. Additionally, the last two rows also shows

the total datablock count and the respective percentage of occupation.

Despite the three evaluation summaries displayed in this section being

better interpreted when compared at different moments in time, allowing

for an understanding of how the data layout has evolved QoS-wise, they

already provide some insight on the performance of the default ext3fs allo-

cators. Especially on the results presented in the allocation bitmaps and in

Table 5.8, it becomes evident that using QoS-unaware allocators cause data

layouts to appear in a chaotic manner when it comes to QoS evaluation.

This further reinforces the fact that a different approach must be obtained

when it comes to the existing solutions listed in Chapter 2. This means that,

even after rearranging infrastructure layouts or migrating data to different

locations in order to meet QoS requirements, QoS-unaware allocators will

continue to focus on the wrong aspects and disturb the storage layout.

Very
Underprov.

Perfectly
Overprov.

Very
Underprov. Matched Overprovisioned

Reliability 62 397 420 378 390 711 152 282 56 677

Read
56 672 152 207 390 716 420 453 62 397

Performance

Write
56 672 152 207 390 716 420 453 62 397

Performance

Total
175 741 724 792 1 172 143 993 188 181 471

Count

Average 5.41% 22.32% 36.10% 30.58% 5.59%

Table 5.8.: Datablock count under each provisioning category for the default
ext3fs allocator.

However it is out of the scope of this research to evaluate the performance

of the implemented algorithms, we have annotated the time it took to run

each experiment. These values were summarised at the end of this chapter

on Section 5.5.
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5.4.2. Evaluation of the ext3ipods inode QoS-aware

Allocator

Following the experiments conducted with the stock ext3fs allocator, we

continue to test the ext3ipods QoS-aware inode allocator. This is done by

initialising another copy of the 4.5 GB filesystem with the same block group

settings, but reloading the kernel module with the new inode allocator.

Next, we populate the filesystem using the same settings in Impressions.

This will take the filesystem to the same occupancy level as in the previous

test; that is, 96%.

At this point, we expect to see a meaningful improvement on the filesys-

tem layout. This is mainly because the stock ext3fs datablock allocator

will attempt to find datablocks within the same block group as the inode

itself when there is no data allocated for that inode. If there was data pre-

viously allocated to the inode, then the ext3fs allocator would consider the

block group of the last allocated datablock.

Table 5.9 lists the results showing block group evaluation scores for the

first evaluation mechanism. Being aware that the filesystem is occupied to

96% of its capacity, these results already show a dramatic improvement.

This is inferred by the QoS scores of the block groups in the RAID5 tier,

which indicates a flawless allocation QoS-wise. The following tier shows a

score of 560, which is a great improvement on the 876 465 assessed with the

stock ext3fs allocator. The last tier scored 895 924, which may appear high

but is under half of the 1 740 244 obtained scored in the first experiment.

Analysing the allocation maps for this second experiment, we present

Figures 5.10, 5.11 and 5.12 illustrating the QoS match of the reliability,

read and write performances respectively. Again, it is possible to infer that

there is a large amount of perfectly matched data due to green areas visible

in the map. Apart from the reliability map, we also note blue sections on

the RAID0 tier. This contributes to the cause of the higher scores observed

for that tier on the first evaluation mechanism.

Due to the homogeneous allocation especially on the first tier, careful

analysis will allow the observation of a continuous set of grey datablocks in

the beginning of each block group. We stress that this is not free space.

Rather it is the block group metadata as described in the filesystem layout

and illustrated in Figure 3.7.
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Tier Block Group Index Block Group Score Accumulated Tier Score

RAID5

1 0

0

2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0

RAID10

13 60

560

14 36
15 48
16 6
17 365
18 0
19 25
20 20

RAID0

21 0

895 924

22 0
23 0
24 0
25 0
26 68 648
27 22 196
28 99 784
29 129 004
30 129 008
31 86 652
32 57 472
33 28 896
34 152 400
35 121 864
36 0

Table 5.9.: Block group evaluation scores whilst using the QoS-aware inode
allocator.
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Continuing to analyse the allocation maps, we observe that the small

second tier score that was listed in Table 5.9 refers to some reliability over-

provisioning and a minor underprovisioned area in the read and write per-

formance maps. This occurs due to the high occupancy of the filesystem

and the exhaustion of space for perfect matches.

Finally, on the last block groups of the last tier, we see a large underpro-

visioned area in the reliability map and a large overprovisioned area in the

read and performance maps. Combining the facts that the occupancy of the

filesystem is high and that this misallocation happened towards the end of

the tier, we theorise that this event happened due to the lack of free space

in order to meet the QoS requirements of the data written last. Indeed,

the last tier offers the largest low reliability area and therefore the hardest

criteria to meet, considering Impressions will, to some extent, evenly choose

between the three combinations of QoS levels as discussed in Section 5.3.

To support this conjecture, we reexecuted this second experiment, but

configuring Impressions to allocate only 2.0 GB of the 4.5 GB filesystem.

We then expected to see a smaller allocated area in each tier, as well as no

underprovisioning cases whatsoever. Appendix A.1 confirms this conjecture

by presenting and discussing additional results. Additionally, we realised

that apart from the three possible QoS attribute combinations, files created

in the root directory of the filesystem were set to the same attributes as

the root directory itself. Considering we decided upon not setting any re-

quirements for the root directory, these files are allocated based on a low

reliability and low read and write performance QoS requirements. This will

lead to overprovisioning at some extent, because our infrastructure does not

have any block groups delivering such combination of QoS attributes.

Finally, we obtain the datablock QoS provisioning match count. Ta-

ble 5.10 lists these results, reflecting the allocation maps previously anal-

ysed. We observe that the numbers concentrated in the Perfectly Matched

section, improving from 36.10% when using the ext3fs allocators to 81.71%

under the new scenario. Other notable numbers are the reduction in under-

provisioning, that accumulated 27.73% in the previous test and improved

to 6.1% and the overprovisioning, that improved from 36.17% to 12.61%.
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Figure 5.10.: QoS-aware inode allocator bitmap for the reliability QoS
attribute.
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Figure 5.11.: QoS-aware inode allocator bitmap for the read performance
QoS attribute.
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Figure 5.12.: QoS-aware inode allocator bitmap for the write performance
QoS attribute.

120



Very
Underprov.

Perfectly
Overprov.

Very
Underprov. Matched Overprovisioned

Reliability 26 147 171 687 884 451 80 80

Read
0 80 884 531 171 687 26 147

Performance

Write
0 80 884 531 171 687 26 147

Performance

Total
26 147 171 847 2 653 513 343 454 52 374

Count

Average 0.81% 5.29% 81.71% 10.58% 1.61%

Table 5.10.: Datablock count under each provisioning category for the QoS-
aware inode allocator.

5.4.3. Evaluation of the ext3ipods Datablock QoS-aware

Allocator

The last and most sophisticated allocator we evaluate is the ext3ipods

datablock QoS-aware allocator. This adds to the ext3ipods QoS-aware

inode allocator by evaluating the datablock allocation requests with regards

to the match of QoS attributes. It is important to stress that this allocator

encompass the previously experimented allocator, also considering the QoS

elements for the allocation of inodes. Similarly to the previous example, we

initialise a separate copy of the 4.5 GB test filesystem, set the block group

QoS delivery attributes and run the QoS enhanced version of Impressions

with the same set of parameters.

Last experiment produced results showing that our approach is very ef-

ficient when it comes to allocate inodes considering QoS elements. For

this experiment, however, we expect only but a minor improvement on the

numbers already seen, with perhaps no noticeable changes to the alloca-

tion maps. This is due to the datablocks being initially allocated to the

same block group as their inode (which was already allocated following QoS

elements) and subsequently allocated following the last datablock.

Following this logic, no improvements are all were to be expected. How-

ever, due to the low space conditions imposed by this test, we still expect

improvements to some extent. The major gains proposed by this allocator

would be visible on cases where previous datablocks (or inodes) were allo-

cated without the proper QoS considerations. Also, when there are QoS

attribute changes during the lifetime of data in the system.
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Table 5.11 lists the initial assessment of the results obtained in the ex-

periment. We can see an improvement, although relatively small, to the

results obtained with the ext3ipods QoS-aware inode allocator. The sec-

ond tier has score improved from 460 to 160, approaching 0. The third tier

improved from 895 924 to 895 604. We can safely assume that the score re-

mains high due to same reasons described in the previous section and tested

in Appendix A.1.

Tier Block Group Index Block Group Score Accumulated Tier Score

RAID5

1 0

0

2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0

RAID10

13 10

160

14 0
15 0
16 6
17 48
18 0
19 36
20 60

RAID0

21 0

895 604

22 121 864
23 152 400
24 28 256
25 57 792
26 85 476
27 129 016
28 127 860
29 101 096
30 22 900
31 68 944
32 0
33 0
34 0
35 0
36 0

Table 5.11.: Block group evaluation scores whilst using the QoS-aware dat-
ablock allocator.
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Next, we generate the allocation maps and present Figures 5.13, 5.14

and 5.15 indicating reliability, read and write performance respectively. Al-

though they look similar to the results of the previous section, we observe

minor differences regarding the location of under and overprovisioned areas.

Perhaps the most noticeable discrepancy is the location of the very un-

derprovisioned datablocks that appear on the third tier. In the previous ex-

periment, they appear towards the end of the tier. In Figure 5.13, however,

they appear on the first block groups of the tier. This event is explained due

to the implementation of the datablock QoS-aware allocation algorithm.

When the algorithm was implemented, we used insertion sort to keep the

priority queue sorted according to the QoS score of the block groups. This

means that while the block groups were scanned linearly from first to last,

the best matches were always inserted in the beginning of the queue, causing

the last located block groups to be the first candidates for allocation.

To further illustrate the block groups being selected from last to first from

the priority queue, we used the set of Impressions’s parameters that cause

it to populate only 2 GB of the test filesystem. The allocation bitmaps for

this additional experiment are listed in Appendix A.2 and can be compared

to those of Appendix A.1, where the default ext3fs allocators were used.

For the last analysis, we obtain the datablock QoS provisioning match

count. Table 5.12 lists these results, again reflecting the allocation maps

previously analysed. We observe that the numbers concentrated even fur-

ther in the Perfectly Matched section, improving from the original 36.10%

when using the ext3fs allocators to 81.72% under the new scenario. The

overall underprovisioning reduced from 27.73% in the original test to 6.09%,

while the overall overprovisioning improved from 36.17% to 12.19%.

5.5. Final Considerations

This chapter presented a series of experiments conducted on copies of a test

filesystem in order to show the benefits of QoS-aware allocation algorithms.

Comparing the results obtained in Section 5.4.1, 5.4.2 and 5.4.3, we can ob-

serve the efficiency of our proposed relative QoS score evaluation formula.

To further emphasise the improved placement provided by our QoS-aware

solutions, Figure 5.16 presents a histogram comparing the provisioning fac-

tors achieved by each allocator.
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Figure 5.13.: QoS-aware datablock allocator bitmap for the reliability QoS
attribute.
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Figure 5.14.: QoS-aware datablock allocator bitmap for the read perfor-
mance QoS attribute.
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Figure 5.15.: QoS-aware datablock allocator bitmap for the write perfor-
mance QoS attribute.
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Very
Underprov.

Perfectly
Overprov.

Very
Underprov. Matched Overprovisioned

Reliability 26 067 171 767 884 531 0 80

Read
0 0 884 611 171 767 26 067

Performance

Write
0 0 884 611 171 767 26 067

Performance

Total
26 067 171 767 2 653 753 343 534 52 214

Count

Average 0.80% 5.29% 81.72% 10.58% 1.61%

Table 5.12.: Datablock count under each provisioning category for the QoS-
aware datablock allocator.
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Figure 5.16.: Comparison of the provisioning obtained with different
allocators.
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The histogram plots five different experiments. Firstly, we see in red the

provisioning obtained by the default ext3fs allocator. Next, we see the

ext3ipods inode and datablock QoS-aware allocators in green and blue,

respectively. Finally, we see in purple and cyan the additional results of the

same QoS enhanced allocators when executed on a half populated filesys-

tems, showing their increased efficiency given enough storage space.

Regarding the performance of the implemented algorithms, we have an-

notated the time to execute the experiments using each set of allocators.

These are summarised in Table 5.13, including the total time to populate the

filesystem and their relative performance to the default ext3fs allocators.

While Figure 5.16 shows the layout of the filesystem is improved signif-

icantly with the proposed strategies, Table 5.13 shows that the implemen-

tation does not perform as well as the original ext3fs allocators. We note

that this measurement evaluates only the time to find new inodes and dat-

ablocks for allocation. The actual usage performance of the filesystem will

reflect the QoS match in terms of desired and delivered performance at-

tributes. Also, alternatives for improving these implementations in terms

of performance were discussed in Section 4.5.

Allocator Time to Populate Relative Performance

Default ext3fs Allocator 108 secs 1.00
QoS-aware inode Allocator 271 secs 0.40

QoS-aware Datablock Allocator 293 secs 0.37

Table 5.13.: Time to populate the 4.5 GB test filesystem.
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6. Conclusions and Future Work

While the growth in the amount of data managed by organisations shows

no signs of abating, the human resources involved in the managing of stor-

age volumes also increases. This has driven research towards automated

solutions that attempt to analyse I/O requests (considering aspects such as

I/O frequency and distribution of read/write buffer sizes) and adjust the

infrastructure layer to improve performance.

However, existing approaches do not cater for QoS attributes that cannot

be inferred by mere workload analysis, such as reliability. They are also in-

effective for cases such as database transactions that need to be executed as

fast as possible once invoked, but that may use tables that are not accessed

very often. On such automatic systems, these tables would likely occupy

non-performatic storage areas.

6.1. Summary of Achievements

This thesis has presented a different approach where, on one hand, QoS

requirements of datasets are specified by users and applications and, on the

other, QoS attributes delivered by the storage infrastructure are profiled and

adjusted by system administrators. With this information, an intelligent

filesystem fabric is capable of placing data in order to obtain a good match

between desired and delivered relative QoS.

We have prototyped this idea in a working environment by enhancing

the popular Linux Extended 3 Filesystem with QoS extensions. Because

our implementation makes use of reserved space on the original filesystem

structure, an existing ext3fs image may be mounted back and forth (with

our modules or the stock kernel) without any conversion. Furthermore, we

have designed and implemented working QoS-aware allocation algorithms.

In order to develop such algorithms, we first studied the means to compute

the match between desired and delivered QoS attributes. This was realised
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in the form of a formula that takes these values, for any number of attributes,

and provides a score regarding the degree of QoS match between both. The

resulting score is used by allocation and migration algorithms as well as

evaluation techniques that are used to assess data layouts.

The specification of desired QoS attributes on the datasets has been im-

plemented in the reserved space within inode flags. This allowed us to use

existing mechanisms for viewing and changing such flags using the lsattr

and chattr tools respectively, in the same way chmod is used to manage

an inode’s permissions. For cases where this metadata exceeds the avail-

able reserved space we proposed the usage of extended attributes, which is

another convenient existing mechanism.

Regarding the delivered QoS attributes of the storage tiers, we devel-

oped a kernel extension in the form of a loadable module called the iPODS

Filesystem Manager (ifm). This module, amongst other functions, allows

system administrators and profiling tools to conveniently view and update

the metadata in a filesystem’s block groups through read and write opera-

tions on a character device.

Another achievement is the migration algorithms proposed to cater for

the evolution of QoS requirements and the continual improvement of the

degree of QoS matching. The concepts behind these algorithms are inspired

by the online defragmentation mechanism of ext4fs and implemented in

a similar way. This includes an extension to the ioctl() kernel interface,

allowing for an elegant implementation of both active and passive strategies.

We enhanced Impressions, a framework for filesystem benchmarking, in

order to define different combinations of desired QoS attributes on datasets

during the population of a test filesystem. That allowed us to experiment

with the default ext3fs allocators and our QoS-aware allocators for compar-

ison. We could then use ifm to collect data from populated filesystems and

show both quantitatively and visually the benefits of the proposed solution.

Finally, we intend to make the source code for the implementations of this

work available online. This includes Linux kernel patches for ext3ipods,

the filesystem management loadable module ifm, the suite of visualisation

tools and the QoS-enhanced version of e2fsprogs. Further information can

be found at http://www.paradoxo.org/.
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6.2. Applications

As discussed in the introduction of this thesis, the usage of multi-tier Vir-

tualised Storage Systems continues to grow in the industry. Due to rapidly-

changing business needs such as the implementation of new technologies

or features for power efficiency and green computing, to name but a few,

the management of Quality of Service in storage infrastructures remains a

challenge for every corporation.

While current solutions for the automation of these management tasks

focus mainly on improving VSSs performance, our proposal creates new

possibilities in the field. By allowing system administrators to specify what

their storage infrastructure is capable of delivering and matching such capa-

bilities to the QoS desired by datasets as defined by users and applications,

we approach the problem from a complete different perspective.

Following up with this idea, the concepts introduced in this thesis offer

a new solution for problems affecting any organisation using a multi-tiered

storage infrastructure. This includes banks, media agencies, internet service

providers and data centres to name but a few. Although we have imple-

mented our prototype over ext3fs, such organisations can apply the same

principles to any other filesystem or storage technology.

Furthermore, the presented principle of relative QoS matching can be

applied to other problems outside of the storage domain. Many areas re-

quiring the match of two technologies based on relative attributes could

benefit from this idea. This includes the selection of iterative solutions for

mathematical problems, the migration and placement of virtual machines

in hardware providing specific characteristics and the division of personnel

for the execution of particular tasks, to name but a few.

6.3. Future Work

There are a number of possible extensions to the work presented in this

thesis. Considering we focused on showing the benefits of a QoS-aware allo-

cation strategy for the placement of data in multi-tier VSSs, some ancillary

aspects that could have been analysed were put aside for the moment. Apart

from subjects that would involve prototyping and experimenting for result

analysis, we will also list topics that could be open for future debate.
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The first extension we propose is the assessment of external fragmentation

when using the algorithms introduced in this thesis. Fragmentation plays

an important role in the access performance of data. This is especially true

when it comes to rotating magnetic storage, where seek times can represent

a considerable part of the access times for data that cannot be contiguously

read from the media.

Considering the allocation algorithms were heavily modified to attain the

objectives in view, the original principles of preventing filesystem fragmen-

tation were disregarded. To compare the presence of fragmented data, we

suggest similar comparisons of our algorithms to the ext3fs counterparts

under different benchmarking routines. Tests that stress fragmentation in-

clude interleaved truncation and later allocation of data in existing files or

the concurrent writing of large filesystem entries.

Another extension which would be valuable is the performance evaluation

and improvement of the algorithms proposed. While we already indicated

possible enhancements in Sections 4.5.2, 4.5.3 and 4.6.3, there was no op-

portunity to implement and experiment with them. While we emphasise

that the focus of this work is to show the benefits of the solution presented,

the adoption of such solution is dependent on its performance impact.

This could be achieved in separate stages. Firstly, a study on the per-

formance comparison of the current implementation in ext3ipods. These

results would provide a crucial baseline for future evaluation of any alter-

ations to the algorithms. Secondly, the implementation of the proposed

caches and indices as proposed in the aforementioned sections. Finally,

an evaluation and reassessment of the results, possibly enlightening further

changes and modifications that are not as tangible at this stage.

With regards to the applicability of this work to a cloud-like environment,

we believe there is ground for the exploration of a cost or pricing mechanism.

This would apply especially for high levels of QoS attributes, protecting a

system from abuse when users or applications require high performance, for

example, to all of their data.

In such a cloud environment, this scenario could arise due to the requester

for a particular QoS level being unaware regarding the needs of other users in

the system. This leaves space for further research on how a quota-like system

could be applied. Such mechanism would ensure that users or applications

would be required to balance the relative QoS requirements for their data.
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A. Additional Experiments

A.1. Using the ext3ipods inode Allocator with a

Reduced Filesystem Population

This section provides additional results regarding the experiments con-

ducted with the ext3ipods QoS-aware inode allocator. Based on the results

observed in Section 5.4.2, a conjecture was elaborated regarding the alloca-

tion of underprovisioned areas. It states that an even amount of requests

are made with the QoS combinations at hand, but there is no corresponding

storage space available per QoS combination to meet such requests.

To validate the conjecture, the experiment was rerun with a modified pa-

rameter set in Impressions. The new configuration requests a 2.0 GB popu-

lation to the instead of the original 4.0 GB. The same evaluation mechanisms

are then applied to the resulting filesystem in order to assess the results.

Table A.1 illustrate the block group allocation scores for the new test case.

It is possible to immediately visualise the score of the third tier dropping

to zero. The score of the second tier, however, increased considerably and

further analysis is required to determine the reason why.

Next, Figures A.1, A.2 and A.3 displays the allocation bitmaps for the

reliability, read and write performance respectively. Observing these results,

it is possible to visualise see the original underprovisioned area disappears,

suggesting that the conjecture was correct.

The only areas that are not perfectly matched appear in the second tier.

Analysing these inodes individually, we observed that they actually request

a QoS combination of low reliability and low read and write performance.

While Impressions was not configured to issue allocation requests with this

QoS combination, the root directory of the filesystem was not set with any

QoS attributes. In our implementation, this is interpreted as low require-

ments for all attributes. Therefore files created on this top level directory

will inherit such attributes accordingly.
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Tier Block Group Index Block Group Score Accumulated Tier Score

RAID5

1 0

0

2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0

RAID10

13 4014

55 650

14 16 096
15 18 498
16 5 676
17 6 440
18 0
19 4 926
20 0

RAID0

21 0

0

22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 0
34 0
35 0
36 0

Table A.1.: Block group evaluation scores whilst using the QoS-aware inode
allocator with reduced filesystem population.
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Figure A.1.: QoS-aware inode allocator bitmap for the reliability QoS at-
tribute when using a reduced filesystem population.
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Figure A.2.: QoS-aware inode allocator bitmap for the read performance
QoS attribute when using a reduced filesystem population.
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Figure A.3.: QoS-aware datablock inode bitmap for the write performance
QoS attribute when using a reduced filesystem population.
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Finally, we evaluate the datablock distribution according to the provi-

sioning match. Table A.2 lists the results, showing in detail that 98.34% of

the allocated datablocks were perfectly matched to a corresponding block

group. It also quantifies the small amount of overprovisioning to 1.66%.

Very
Underprov.

Perfectly
Overprov.

Very
Underprov. Matched Overprovisioned

Reliability 0 0 530 776 0 27 825

Read
0 0 558 601 0 0

Performance

Write
0 0 558 601 0 0

Performance

Total
0 0 1 647 978 0 27 825

Count

Average 0% 0% 98.34% 0% 1.66%

Table A.2.: Datablock count under each provisioning category for the QoS-
aware inode allocator when analysing a filesystem with reduced
population.

While the results listed in this section do not constitute a formal proof

to explain the underprovisioning observed in Section 5.4.2, they serve to

strengthen the presented conjecture. Also, these results better illustrate

the good performance of the QoS-aware allocators, considering a smaller

population of the filesystem and therefore enough space for the allocator to

work.

A.2. Using the ext3ipods Datablock Allocator

with Reduced Filesystem Population

This section experiments with the ext3ipods QoS-aware datablock alloca-

tor using an Impressions modified parameters set. The modifications will

configure Impressions to occupy 2.0 GB of the filesystem instead of 4.0 GB

as performed in Section 5.4.3. The objective of this additional experiment

is to observe which block groups are selected first during the allocation

process.

To achieve this objective, the only evaluation required is the production

of the allocation bitmaps, as the relative scores produced by the other two

evaluation mechanisms are not relevant. Figures A.4, A.5 and A.6 present
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the reliability, read and write performance allocation bitmaps.

Figure A.4.: QoS-aware datablock allocator bitmap for the reliability QoS
attribute on a reduced population filesystem.

Considering the less populated filesystem, it is possible to observe in prac-

tice the behaviour described in the ext3ipods QoS-aware datablock allo-

cation algorithm. The implementation, which follows the algorithm, scans

all block groups linearly. Upon evaluating the QoS score for a particular

datablock and block group, it uses the insertion sort algorithm to include

the block group in the priority queue.
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Figure A.5.: QoS-aware datablock allocator bitmap for the read perfor-
mance QoS attribute on a reduced population filesystem.
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Figure A.6.: QoS-aware datablock allocator bitmap for the write perfor-
mance QoS attribute on a reduced population filesystem.
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Due to the priority queue structure, which has the last evaluated block

group at its beginning, the selection of block groups will actually take place

from the end of the filesystem towards the start. The datablock alloca-

tion within that block group, however, will commence on the first available

addresses and move towards the end.

Observing the allocation bitmaps presented in this section, this behaviour

is noticeable. To recognise it, it suffices to note that each tier has the last

block groups allocated and the first ones are still available. Furthermore,

the last block group to where datablocks were placed (i.e. the first populated

block group in each tier) will be occupied from the first addresses towards

the last.
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